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Abstract

Given the requisite cost associated with observing species interactions, ecologists often

reuse species interaction networks created by different sets of researchers to test their

hypotheses regarding how ecological processes drive network topology. Yet, topological

properties identified across these networks may not be sufficiently attributable to ecological

processes alone as often assumed. Instead, much of the totality of topological differences

between networks—topological heterogeneity—could be due to variations in research

designs and approaches that different researchers use to create each species interaction

network. To evaluate the degree to which this topological heterogeneity is present in avail-

able ecological networks, we first compared the amount of topological heterogeneity across

723 species interaction networks created by different sets of researchers with the amount

quantified from non-ecological networks known to be constructed following more consistent

approaches. Then, to further test whether the topological heterogeneity was due to differ-

ences in study designs, and not only to inherent variation within ecological networks, we

compared the amount of topological heterogeneity between species interaction networks

created by the same sets of researchers (i.e., networks from the same publication) with the

amount quantified between networks that were each from a unique publication source. We

found that species interaction networks are highly topologically heterogeneous: while spe-

cies interaction networks from the same publication are much more topologically similar to

each other than interaction networks that are from a unique publication, they still show at

least twice as much heterogeneity as any category of non-ecological networks that we

tested. Altogether, our findings suggest that extra care is necessary to effectively analyze

species interaction networks created by different researchers, perhaps by controlling for the

publication source of each network.
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Introduction

Network approaches are routinely used as a tool to analyze ecological systems [1–4]. This pop-

ularity extends to species interaction networks which model ecological communities, where

nodes represent species and edges represent their corresponding species interactions [5]. Due

to the effort needed to observe species and their interactions in situ, creating species interac-

tion networks requires a tremendous amount of resources for their adequate construction [6–

8]. Given this requisite effort, instead of creating their own networks, ecologists often reuse

available species interaction networks which happen to be created by different sets of research-

ers, to test their own ecological hypotheses [9,10]. These available species interaction networks

have therefore been used in many ecological studies including when determining the complex-

ity of networks [11], identifying common topological properties across networks [12,13], and

evaluating how network topology is shaped by species traits [14], environmental factors/space

[7,15–17], and time [18–20].

A current crux of reusing available species interaction networks created by different sets of

researchers, however, is the unwanted topological differences that can exist due to the lack of

consistency in the way ecological systems are translated into networks by different sets of

researchers [17,21–27] (Fig 1). While some criticisms related to this issue had been raised in

the 1980s/90s, e.g., Paine (1988) [28] and Polis (1991) [29], with the increasing availability to

the internet and growth in computational power, a renewed interest in networks was sparked,

and many of these concerns were overlooked [30].

Biological and environmental drivers that 
alter a community’s network topology Sampling strategy decisions that affect which 

biological/environmental factors are 
observed during in situ sampling

Spatial elements
. Sampling location
. Extent and area resolution of observation
Temporal elements
. Sampling starting date/time
. Duration and time interval of observation

Network construction decisions 
that influence network topology 

. Node resolution

. Selection of the type of  
 interactions to include

 . Type of environment 
 . Population size
 . Interaction frequency

Fig 1. Potential sources of topological heterogeneity that influence researchers’ interpretation of a plant–pollinator community as a bipartite network. Here,

the observed plant–pollinator community (green oval) is translated into a researcher’s network representation (thought bubble). Sources of topological

heterogeneity between different researchers’ network interpretations of a community could be introduced from: (i) observing different biological and

environmental drivers (purple text) that influence the community’s interactions, (ii) the different selected sampling strategies (orange text) that influence which

biological and environmental factors are included during a researcher’s observation, and (iii) the different selected network construction methods (blue text)

researchers use to design a species interaction network.

https://doi.org/10.1371/journal.pbio.3002068.g001
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In order to effectively reflect on these criticisms and overall problems that occur when reus-

ing species interaction networks created by different sets of researchers, we thought it neces-

sary to first have a vocabulary to do so. As such, we introduce a framework that partitions how

the totality of these topological differences—topological heterogeneity—between species inter-

action networks created by different sets of researchers can originate, by broadly organizing its

sources into 3 classes (Table 1): biological and environmental drivers, sampling strategies, and

network construction methods. The biological and environmental drivers class consists of

sources of topological heterogeneity that arise from the different (a)biotic conditions that

shape species and their interactions across different communities. For example, abiotic condi-

tions including temperature can influence whether a species persists as well as modify their

interactions [31]. Likewise, biotic drivers such as population sizes can influence both the exis-

tence and strength of interactions [32,33]. The sampling strategies class consists of sources of

topological heterogeneity that arise from the different study design decisions made by

researchers when observing species and their interactions and determines which effects from

(a)biotic factors are included in the network, e.g., how larger sampling area and larger sam-

pling time can capture greater environmental factors. The network construction methods class

consists of sources of topological heterogeneity that are introduced via the different decisions

made by researchers when constructing each network, e.g., only using plant species from a sin-

gle genus (Fig 2A) or including unidentified species in the network (Fig 2B). In combination,

these classes of topological heterogeneity make it incredibly difficult to decipher which topo-

logical properties in species interaction networks might be due to the ecological process of

interest rather than due to unwanted sources of heterogeneity.

Structural differences between species interaction networks are not problematic per se

since topological heterogeneity is necessary for determining drivers of that topology. However,

large amounts of topological heterogeneity between networks created by different sets of

researchers may be indicative of networks that lack commensurability [43]. While some

Table 1. Classes of topological heterogeneity that influence species interaction networks, some sources of this topological heterogeneity, a description of the source,

and references.

Classes of

heterogeneity

Source Description of source Example references

Biological and

environmental drivers

Type of

environment

Abiotic conditions influence topology (e.g., plant–pollinator networks

are structured differently across a temperature gradient)

Welti and Joern (2015) [31], Pellissier and

colleagues (2018) [7]

Population sizes Species abundances influence probability of interaction (e.g.,

topological differences in communities with high abundances vs. low

abundances of all species)

Vázquez and colleagues (2007) [32], Vázquez

and colleagues (2009) [33]

Interaction

frequencies

Number of interaction events an organism has influences the

probability interactions are recorded in a network (e.g., topological

differences in networks when cryptic interactions are included)

Pringle and Hutchinson (2020) [30], Pringle

(2020) [34]

Sampling strategies Temporal

elements of study

The duration and time interval of observation used to characterize a

community influence its representation as a network (e.g., topological

differences when networks are constructed from data collected over a

day vs. week)

CaraDonna and Waser (2020) [18], Schwarz and

colleagues (2020) [19], CaraDonna and

colleagues (2021) [20]

Spatial elements of

study

The extent and area resolution of observation used to characterize a

community influence its representation as a network (e.g., topological

differences when networks are constructed from data collected in a

patch vs. a forest)

Galiana and colleagues (2018) [35], Galiana and

colleagues (2022) [36]

Network construction

methods

Selection of

interaction types

Interaction types differently influence communities (e.g., topological

differences between mutualistic and antagonistic systems)

Thébault and Fontaine (2010) [37], Allesina and

Tang (2012) [38]

Node resolution Organismal classification and targeted species influences topology

(e.g., topological differences when nodes represent species vs. genus or

when nodes additionally represent ontogentic stages)

Hemprich-Bennett and colleagues (2021) [39],

Bodner and colleagues (2022) [40]

https://doi.org/10.1371/journal.pbio.3002068.t001
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studies attempt to control for inconsistencies in the way species interaction networks are cre-

ated by different researchers, e.g., controlling for sampling effort [44] or network size [45],

these controls do not account for all associated unwanted topological heterogeneity when

using the many different topological metrics adopted by ecologists. Hence, evaluating the

amount of topological heterogeneity present in species interaction networks created by differ-

ent researchers is a necessity. One approach to do this is by comparing the dispersion of net-

work topology within species interaction networks to other real world networks that are not

significantly hampered by the classes of heterogeneity listed in Table 1. If a system is accurately

portrayed by its own networks, we would expect these networks to have a small amount of dis-

persion expressed within the metrics used to capture their topology.

As an attempt to quantify ecological topological heterogeneity, we used the largest set of

bipartite networks and measured the amount of topological dispersion in (i) species interac-

tion networks compared to non-ecological networks; and (ii) species interaction networks cre-

ated by the same set of researchers (i.e., networks from the same publication) compared to the

species interaction networks each a product of their own publication. We quantified differ-

ences in network topology using directed graphlet correlation distance [46], a heuristic

method that measures the Euclidean distance between networks, where networks closer

together are those that are more topologically similar.

To measure topological heterogeneity, we evaluated the total dispersion in directed graphlet

correlation distances between networks of the same domain (defined below). As most ecologi-

cal networks do not have metadata regarding the conditions under which each network was

created (i.e., their associated biological and environmental drivers, sampling strategies, and

network construction methods), we could not partition topological heterogeneity across the

heterogeneity classes. However, as we quantified the total dispersion in non-ecological
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Fig 2. Matrix representations of 2 bipartite species interaction networks from www.web-of-life.es; an open species interaction network database. Yellow

boxes in each matrix indicate the presence of an interaction between species at the corresponding row (plants) and column (animals). (A) Seed-dispersal

network from Poulin and colleagues (1999) [41], where all plant species (underlined) are from the genus Psychotria. (B) Subset of the plant–pollinator network

from Stald (2003) [42], which includes a large number of unidentified pollinator species (underlined; 34 of the 54 total pollinator species (not all shown here) in

the whole network).

https://doi.org/10.1371/journal.pbio.3002068.g002
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networks from different domains which are, to a large extent, not hampered by the 3 classes of

heterogeneity, we could use these dispersion values to estimate the total amount of topological

heterogeneity as a result of all 3 heterogeneity classes in species interaction networks. Further-

more, we compared the total dispersion of species interaction networks from the same publica-

tion to those that are not from the same publication to determine if there are topological biases

due to the ways in which different sets of researchers construct networks.

Materials and methods

Data

A total of 3,476 bipartite networks were used in this study (see Table 2 for a description of all

networks and their domains). Of the non-ecological bipartite networks included in our analy-

sis, 1,830 were of the crime domain, 109 were of the journal domain, 245 were of the legislature

domain, 172 were of the actor domain, 194 were of the sports domain, and 203 were of the

microbiome domain. We classified microbiome networks as non-ecological since, among

other properties, they were not built using observational data (instead, for example, by swabs

and subsequent RNA sequencing) and had concrete definitions for their edges/nodes (i.e.,

locations on the human body where a bacterial operational taxonomic unit was found)—2

stark features that differ from species interaction networks (our ecological networks). See

Aagaard and colleagues (2013) [47] for a thorough description of how patients were selected,

and operational taxonomic units were sampled, which were the data we used to build the

microbiome networks. Although microbiome networks could be considered ecological, we

believed that their topological heterogeneity would more resemble non-ecological networks

and thus grouped them accordingly. Except for sports networks that we constructed for this

paper and whose data were obtained from Lahman (2021) [48], www.basketball-reference.

com, and www.hockey-reference.com, all non-ecological networks were obtained from

Michalska-Smith and Allesina (2019) [13]. Of the 723 species interaction networks used in this

Table 2. Description of bipartite networks used in this study.

Network

domain

Node set 1 Node set 2 A connection forms

when

Subgroup each network represents

Species

interaction

Species Species A species feeds on

another

Ant–plant, host–parasite, plant–herbivore, plant–pollinator, or seed–

dispersal community

Actor Actors Film An actor appears in a

film

Action, adventure, animation, comedy, crime, documentary, drama,

family, fantasy, foreign, history, horror, music, mystery, romance, science

fiction, thriller, tv movie, war, or western movie genre across a number of

years

Crime Type of crimes A city’s

neighborhoods

A crime occurs in a city’s

neighborhood

Chicago, Denver, Minneapolis, San Francisco, or Washington of a given

day in 2016

Journal Authors Academic journals An author publishes in

an academic journal

All authors that published in one of The American Naturalist, Ecography,

Ecological Application, Ecological Monographs, Ecology, Ecology Letters,

Journal of Animal Ecology, Journal of Applied Ecology, Journal of

Ecology, or Oikos, and all other academic journals within a given year

(2006–2016)

Legislature Legislators Bills A legislator votes

positively for a bill

The US House, the US Senate, the UN General Assembly, or the

European Parliament of a given year (1941–2016)

Microbiome Bacteria operational

taxonomic unit (OTU)

Locations on a

human patient

A bacteria OTU is found

on patient’s site

A single patient

Sports Athletes Teams An athlete plays for a

team

The NBA, NHL, or MLB, of a given season (1950–2020)

All bipartite networks were connected and had at least 5 nodes in either disjoint sets of nodes.

https://doi.org/10.1371/journal.pbio.3002068.t002
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analysis (obtained from Brimacombe and colleagues (2022) [10]), 10 were ant–plant networks,

97 were host–parasite networks, 41 were plant–herbivore networks, 298 were plant–pollinator

networks, and 277 were seed–dispersal networks. All networks that were included in our anal-

ysis were unweighted (i.e., interactions between nodes were binary).

We included non-ecological systems for comparison in our study given the strict defini-

tions used to define their systems, thereby eliminating much of the biological and environ-

mental drivers, sampling strategies, and network construction methods classes of

heterogeneity that can strongly influence the topology of species interaction networks created

by different sets of researchers. Here, “strict” refers to the high likelihood that the data for

these non-ecological systems were recorded consistently using such definitions that their

respective nodes/edges would more accurately and precisely reflect their intended purpose

when implemented as a network, as compared to species interaction networks. Furthermore,

we either built each non-ecological network ourselves (i.e., sports networks), or used those pre-

viously built by us (i.e., all non-ecological networks other than sports were obtained from

Michalska-Smith and Allesina (2019) [13]), thus ensuring appropriate data were used to build

each non-ecological network. Indeed, the data used to build these networks came from specific

databases for each domain (or subgroup within each domain, where subgroup refers to the dif-

ferent categories of a domain that networks represented, see Table 2). Moreover, as the data

for each domain/subgroup of non-ecological networks came from the same database, if any

class of heterogeneity were to influence their topology, the resulting heterogeneity would at

least be consistent, and thereby reduce potential dispersion in measured topological heteroge-

neity. While undoubtedly the 3 classes of heterogeneity still influence non-ecological networks,

for example, due to the misidentification of nodes, we expected that these classes would be sig-

nificantly less influential than those within species interaction networks. In particular, we

expected large amounts of topological heterogeneity in available species interaction networks

created by different sets of researchers resulted from the inconsistent ways ecological commu-

nities were translated into networks by the different sets of researchers. We expected this

would have introduced inconsistent topology across species interaction networks thereby

increasing the dispersion in measured topological heterogeneity.

To avoid extremely small bipartite networks that may bias our results [13], we only included

networks that had at least 5 nodes in either disjoint sets of nodes, e.g., we required at least 5

pollinator and 5 plant species in a plant–pollinator network. Additionally, only the giant com-

ponent of each network was used (i.e., the largest connected component of a graph), given that

it is unclear how to appropriately analyze disconnected networks.

Directed graphlet correlation distance (DGCD)

In ecology, the most adopted subgraph technique is based on motifs. Generally, for a graph G
composed of a set of nodes V and a set of links L, denoted as G(V,L); a motif of G is a subgraph

G’(V’,L’) with a subset of nodes V’ from V where any edges linking the nodes of V’ found in V
are contained in L’ [49,50]. As differences in network structure are measured by which motifs

are under-/overrepresented in the real network compared to a chosen network null model

[46,51], like many statistical analyses, the results from the motif analysis depend on the choice

of null model. As a consequence, motifs have been cited for possibly relying on ill-posed null

models as a basis for significance testing [52].

To overcome the null model limitation, we instead adopted the subgraph technique of

directed graphlet correlation distance (DGCD) [53] to characterize the topological differences

between networks. Generally, DGCD evaluates network pairwise dissimilarity without relying

on a network null model and does so by quantifying differences in the associations between

PLOS BIOLOGY Topological heterogeneity of networks created by different researchers
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the appearance of directed graphlets (Fig 3A) within a given network to those of another

network.

Formally, graphlets are the induced subgraphs G’(V’,L’), consisting of a subset of nodes V’
from V where all the edges linking the nodes of V’ found in V are in the set L’. Within graph-

lets, nodes are often indistinguishable from one another. Take for example the graphlet G2 in

Fig 3A: in this case, both black nodes in this graphlet are indistinguishable, and thus form an

automorphism orbit—simply orbit—of a graphlet. For this reason, there is only 2 orbits within

G2 labeled 5 and 6.

Generally, the DGCD relies on the directed graphlet correlation matrix (DGCM) of each

network that contains Spearman’s correlations between the number of times nodes appear as

particular orbits with the number of times nodes appear as all other orbits within the given

network (see Fig 3B for an example count of orbit 6 for a particular node of a bipartite net-

work). For example, the Spearman’s correlation between orbits 1 and 6 represented in a

DGCM is calculated by taking the Spearman’s correlation between: (i) a vector where each

index corresponds to a specific node and the entry of that index would be the number of times

that node appeared as orbit 1; and (ii) same as (i) except for orbit 6. Thus, when using all 13

orbits, DGCMs were symmetric 13×13 matrices containing the respective Spearman’s correla-

tions between the appearances of all 13 orbits within a network. Using the DGCMs, the pair-

wise DGCD was evaluated by measuring the pairwise Euclidean distances between all

networks. See Eq (1) for a single pairwise DGCD measure between networks Ki and Kj using

the 13 orbits from Fig 3A (termed DGCD-13 since it uses 13 orbits) and S1 Appendix Section

S1.1 for an example derivation of the DGCD technique. We used DGCD in our study since

recently Tantardini and colleagues (2019) [54] found that this method performs best at
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characterizing and distinguishing between networks of different domains.

DGCD � 13ðKi;KjÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X12

n¼0

X12

m¼nþ1

ðDGCM � 13Ki
ðn;mÞ � DGCM � 13Kj

ðn;mÞÞ
2

v
u
u
t ð1Þ

where DGCM � 13Ki
(n,m) is the directed graphlet correlation matrix-13’s value of network Ki

for orbits n and m.

Since it is expected that networks from the same domain have similar topology, it is also

expected that their DGCMs are similar, and consequently have small pairwise DGCD. Thus,

when projected in visual space, networks from the same domain should be clustered together.

We calculated the pairwise DGCD-13 for all bipartite networks, where we assigned direc-

tions to the edges in the networks. Since bipartite networks are characterized by 2 sets of nodes

where nodes belonging to the same set cannot have an edge, we assigned nodes belonging to 1

set to always represent a “to” direction and the other set of nodes to always represent a “from”

direction in the directed edges. Simply put, this means that the DGCD-13 technique could rec-

ognize which nodes belonged to which set of nodes (e.g., which nodes belonged to the pollina-

tor set of nodes and which nodes belonged to the plant set of nodes in a plant–pollinator

network). According to these direction definitions imposed on the networks, only graphlets

G0, G2, and G3 could appear although all 6 graphlets and 13 orbits were used for better visuali-

zation—specifically Fig 4—but see S1 Appendix Section S1.4 for subsequent analyses using

only the 6 orbits from graphlets G0, G2, and G3, termed DGCD-6. Nevertheless, we note that

the results presented in this article for DGCD-13 agree with those presented in S1 Appendix

Section S1.4 using DGCD-6.

From all pairwise DGCD-13s, we measured the dispersion of network topology by calculat-

ing the mean pairwise distances between all networks of the same domain. In cases where

Dimension 1

D
im

en
si

on
 2

Fig 4. Multidimensional scaling of the pairwise directed graphlet correlation distance-13 (DGCD-13) between all bipartite networks

(n = 3,476). Except for species interaction networks (triangles), only networks that formed clear groups in the plot are uniquely identified

by color. Each point in the plot is a single network. The data and code needed to generate this figure can be found in www.osf.io/my9tv.

https://doi.org/10.1371/journal.pbio.3002068.g004
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subgroups (e.g., hockey networks) formed coherent topology that was different from their

domain (e.g., the mean pairwise DGCD-13 was much smaller for hockey networks compared

to all other sports networks), we instead evaluated the mean pairwise DGCD-13 for that sub-

group. If the set of networks from the same domain or subgroup had small mean pairwise

DGCD-13, then this would indicate that these networks have small dispersion in their topol-

ogy, i.e., they are similarly structured.

Additionally, we tested whether species interaction networks created by the same set of

researchers (i.e., networks sourced from the same publication) were more topologically similar

than networks not sourced from the same publication, see Table C in S1 Appendix for a list of

publications that provided more than a single network. Specifically, we compared the mean

pairwise DGCD-13 of networks from the same publication to the mean pairwise DGCD-13 of

networks that were each a product of their own publication. Given that networks constructed

by the same researchers are likely more parsimonious in terms of their topology, we expected

that the mean pairwise DGCD-13 between networks from the same publication were going to

be smaller than networks each produced by different publications.

Results

The pairwise DGCD-13 between all networks was projected via multidimensional scaling

(MDS) [55], also commonly known as principal coordinate analysis, using the MDS function

in the Scikit-learn library [56] of Python. Except for species interaction networks, only net-

works that formed clear clusters were uniquely colored and identified in the MDS plot (Fig 4).

Most networks from the same domain occurred in the same location in the plot and were iso-

lated from other networks’ domains in the MDS space except for species interaction, sports,

and crime networks. With regards to species interaction networks, no coherent topology was

observed as these networks covered all other types of non-ecological networks besides micro-

biome and sports networks. With regards to sports and crime networks, specific cities (i.e., the

subgroups of Chicago, Denver, Minneapolis, San Francisco, and Washington) and specific

sports (i.e., the subgroups of hockey, baseball, and basketball) had unique topology and formed

their own respective subgroupings within the plot, and thus despite not having the same topol-

ogy, there was clear topological coherence within a city’s own set of crime networks and a

sports’ own set of networks. Here, subgrouping refers to networks from a specific subgroup

that formed clear and unique clusters in the MDS plot. Since every network’s domain was

composed of multiple different subgroups (e.g., actor networks were made from action, adven-

ture, . . ., western movie genres/subgroups, Table 2), each domain could have potentially

formed their own distinct subgroupings within Fig 4 if they exhibited unique substructure like

crime and sports networks.

Of networks from the same domain or networks that had their own subgroupings within

the MDS plot (Fig 4), species interaction networks had the largest mean pairwise DGCD-13 of

1.101—about twice as much as the set of legislation networks which was the next domain or

subgrouping with the most topological dispersion (Table 3). This pattern also held when using

median pairwise DGCD-13 (Table B in S1 Appendix) and so mean DGCD-13 was not signifi-

cantly influenced by outliers. As well, the large variability in the size of species interaction net-

works did not contribute to this larger mean pairwise DGCD-13 value (Table D in S1

Appendix). Interestingly, both legislation and Minneapolis crime networks also had relatively

high mean pairwise DGCD-13 (0.578 and 0.509, respectively), although legislation networks

were composed of 4 subgroups that did not form subgroupings in the MDS plot (i.e., US

House, US Senate, UN General Assembly, and European Parliament) which likely contributed

to this larger value.
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Exclusively within the species interaction domain, networks from the same publication

were more topologically similar, by about a factor of 2, than networks that were each a product

of their own publication (0.544 and 1.134 mean pairwise DGCD-13, respectively, Table 4).

This smaller dispersion within networks from the same publication was also about 32% less

than the topological dispersion within the ecological subgroup that had the least topological

dispersion, i.e., ant–plant (0.794 pairwise DGCD-13, Table 3). It should be noted, however,

that while ant–plant networks were the least topologically heterogeneous subgroup of species

interaction networks tested, this should not be generalized given that we only had a few net-

works available to us (n = 10), which were sourced from only 3 publications. Nevertheless,

although networks from the same publication were generally of the same species interaction

subgroup (i.e., most networks from a specific publication belonged to only one of either ant–

plant, host–parasite, plant–herbivore, plant–pollinator, or seed–dispersal subgroup), networks

Table 3. Mean pairwise directed graphlet correlation distance-13 (DGCD-13) between bipartite networks from the same domain or subgrouping. Subgrouping refers

to a subgroup [i.e., networks classified as the same type of network from the same domain during network construction (e.g., the Chicago networks in the crime network

domain)] that formed an obvious cluster within the MDS plot (Fig 4). See Table 2 for a list of network domains and their corresponding subgroups. All species interaction

networks were classified into their appropriate subgroup even though they did not form subgroupings.

Network domain Subgrouping or subgroup Mean pairwise DGCD-13 Number of networks

Species interaction Ant–plant 0.794 10

Host–parasite 1.064 97

Plant–herbivore 1.264 41

Plant–pollinator 0.890 298

Seed–dispersal 1.092 277

None1 1.101 723

Actor 0.414 172

Crime Chicago 0.129 366

Denver 0.180 366

Minneapolis 0.509 366

San Francisco 0.169 366

Washington 0.305 366

Journal 0.234 109

Legislation 0.578 245

Microbiome 0.241 203

Sports Baseball 0.200 71

Basketball 0.459 68

Hockey 0.330 55

1DGCD-13 between all species interaction networks.

https://doi.org/10.1371/journal.pbio.3002068.t003

Table 4. Mean pairwise directed graphlet correlation distance-13 (DGCD-13) of bipartite species interaction networks from the same publication grouping.

Publication grouping Mean pairwise DGCD-13 Number of networks Number of publications

One network per publication 1.134 236 236

Multiple networks per publication 0.5441 487 58

1Calculated by taking the mean of the average pairwise DGCD-13s between networks from the same publication, weighted by the number of networks produced by each

publication.

Multiple bipartite networks sourced from the same publication (i.e., networks created by the same set of researchers) are termed “multiple networks per publication”

and bipartite networks sourced from publications that each produced only a single network are termed “one network per publication.” See Table C in S1 Appendix for a

list of publications that provided more than 1 network and each publication’s mean pairwise DGCD-13.

https://doi.org/10.1371/journal.pbio.3002068.t004
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from the same publication were more topologically similar than any single species interaction

subgroup.

Discussion

Ecologists commonly reuse species interaction networks created by different sets of research-

ers to test how ecological and environmental processes shape network topology across space

and time [8,9,26]. However, unwanted topological differences as a result of the different ways

in which researchers translate ecological communities into networks could inhibit their

commensurability [10,23,24]. When assessing the degree of topological heterogeneity, i.e., the

total amount of topological differences between a group of networks, we find that species inter-

action networks created by different sets of researchers are extremely topologically heteroge-

neous—about twice the amount than the next most heterogeneous network domain tested—

and that this large heterogeneity is linked to the publication source of each network. Alto-

gether, these findings suggest that species interaction networks created by different sets of

researchers can be problematic for deducing ecological topological rules since much of the

topological heterogeneity is likely not due to ecological processes as is often assumed.

A general principle in statistics is that an increased sample size reduces uncertainties of esti-

mators [57]. Armed with this principle, and the ease with which species interaction networks

can be obtained from online resources [25], it may then be tempting to assume that increasing

one’s data set by collecting all possible networks available alleviates any data issues. However,

using the largest set of bipartite species interaction networks available (n = 723), we illustrate

how large amounts of topological heterogeneity (via the mean pairwise DGCD-13, Table 3)

and consequently uncertainty exists in the topology of species interaction networks created by

different sets of researchers, confirming that more data is not always better when biases are

present [57]. While some metrics, including sampling intensity and effort, have previously

been used to control for biases and sources of topological heterogeneity in species interaction

networks [43], these controls do not effectively account for all sources of heterogeneity (e.g.,

differences in node taxonomy across networks) or when using different topological metrics

(e.g., modularity, nestedness). Hence, careful consideration, beyond a single metric of control,

is required when deciding which networks to include in one’s analyses, so that the majority of

topological differences measured between species interaction networks are a result of the eco-

logical process-of-interest and not from confounding factors.

The large amount of topological heterogeneity in species interaction networks created

by different sets of researchers likely reflects their topological uniqueness due to the distinct

(a)biotic conditions each represented community experiences, the distinct sampling strategies

adopted to characterize each ecological system as a network, and the distinct construction

methods used to create each network (Table 1). Indeed, the large difference in the amount of

topological heterogeneity between species interaction networks and non-ecological networks

may be attributed to these 3 classes of topological heterogeneity given that the non-ecological

networks were created in a consistent way to try to eliminate much of their influence. For

example, we built non-ecological networks using data attained from consistent sampling strat-

egies (e.g., each sampled crime network represented a specific city and day of the year in 2016)

and we used consistent network construction definitions when building the networks from the

data (e.g., all interactions in crime networks always represented a type of crime occurring in a

city’s specific neighborhood). This is not to say that non-ecological networks are devoid of

their own sources of topological heterogeneity. For example, differences in both voter senti-

ment across time and differences in the political landscape across space within the legislative

networks (e.g., between US House and UN General Assembly networks) likely contribute
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some topological heterogeneity. However, the biological and environmental drivers, sampling

strategies, and network construction methods classes of heterogeneity seem to be accentuated

in species interaction networks created by different sets of researchers as compared to the

tested non-ecological networks.

Importantly, even though biological and environmental drivers, sampling strategies, and

network construction methods classes of heterogeneity are known to influence the topology of

species interaction networks, they are nevertheless rarely acknowledged or appropriately con-

trolled in ecological studies. This is especially problematic when reusing networks created by

different sets of researchers since the influence of these classes are likely to vary considerably

depending on the methods and approaches that different researchers use to create each net-

work. In fact, rarely are differences in sampling strategies controlled for when reusing net-

works, even though sampling strategies influence network topology. For example, species

interaction networks are already topologically different when constructed from observational

data collected over different amounts of time [18–20], or over different amounts of area

[35,36]. Furthermore, related to variations in sampling strategies, networks may also vary in

their sampling sufficiency [58]. Insufficiency can occur when the sampling design does not

match the biology of the community and can make networks incommensurable even when

networks are built using the same sampling strategies. Moreover, differences in biological and

environmental drivers that ecological communities experience are sometimes not controlled

for when reusing networks, even though these drivers can influence network topology. For

example, species interaction networks are already topologically different depending on the

temperature each community experiences [31]. As well, despite the widespread reuse of species

interaction networks created by different sets of researchers for testing ecological hypotheses,

it is still relatively unknown how different network construction methods influence topology,

which may also make network comparison difficult. For example, interactions in one plant–

pollinator network can represent a pollinator touching a plant and in another network repre-

sent pollen of a plant being found on a pollinator [59], or networks may or may not contain

pollinators which are commensals or parasitic to plants [60]. Thus, without care and appropri-

ate control of the topological differences from the 3 heterogeneity classes, one is liable to find

erroneous relationships when reusing species interaction networks created by different sets of

researchers [45,61].

All is not lost when reusing species interaction networks created by different sets of

researchers, as one approach to avoid a large amount of the topological heterogeneity may be

to attempt to control for the publication source of each network. While we found a large

amount of topological heterogeneity between all species interaction networks, we also found

that networks created by the same set of researchers (i.e., networks from the same publication)

were more topologically similar to each other (Table 4). Interestingly, we also found that net-

works from the same publication were more topologically similar than networks from any spe-

cies interaction subgroup (i.e., networks belonging only to either ant–plant, host–parasite,

plant–herbivore, plant–pollinator, or seed–dispersal). Consequently, it appears that publica-

tion has an even greater impact on the topology of species interaction networks than biological

processes alone. This may occur since researchers of a given publication generally construct

networks under parsimonious conditions [10], for example, by observing and characterizing

ecological communities across the same time duration (e.g., Trøjelsgaard and colleagues

(2015) [62]) or by classifying nodes across networks using the same protocol (e.g., Pereira

Martins and colleagues (2020) [63]), and thus inadvertently control for many sources of topo-

logical heterogeneity. Of course, biological effects are likely influencing the topology of all net-

works but they can be more easily obscured when analyzing networks across publications. It is

then likely that controlling for the effect of publication can reduce unwanted topological
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heterogeneity between networks. We do, however, strongly caution those that only attempt to

account for the publication source of each reused network. Similar to how different network

metrics are sensitive to different amounts of sampling sufficiency [58], the strong similarity

between networks from the same publication may be more or less relevant when investigating

network structure using other metrics.

Although most researchers do not originally intend for their networks to be reused and

compared to other networks, often they are included in meta-analysis type studies if they are

made freely available. Original authors of networks can improve the scientific utility of their

networks by providing other researchers with information about how they were constructed

[26]. In particular, by providing detailed network metadata, including information on relevant

biological and environmental drivers, sampling strategies, and network construction methods,

authors of the networks can help others understand the specific conditions under which each

network was created. Additionally, given the recent developments of composite methods

designed to estimate sampling sufficiency for ecological networks (e.g., Casas and colleagues

(2018) [58]), authors of species interaction networks could also calculate this metric or provide

the information to do so to check if communities have been sufficiently sampled. Then,

beyond controlling for sources of topological heterogeneity (e.g., node taxonomy), researchers

reusing these networks could also control for sampling sufficiency which is another means to

improve network commensurability. Given appropriate metadata, researchers could also study

how each class of heterogeneity influences the topology of species interaction networks, rather

than the totality of topological heterogeneity as we have done here.

Nevertheless, as users of species interaction networks that happen to be constructed by dif-

ferent sets of researchers, the onus is on us to know the limitations of our data and to ensure

that they effectively represent the systems in the corresponding models we use [64]. Given that

all species interaction networks are models and are thus subject to imperfections (e.g., Pringle

and Hutchinson (2020) [30]; Thomson (2021) [65]), we should be aware of their overall short-

comings and attempt to correct for them, especially since our findings are often used to inform

policy aimed at conserving ecological systems.

Caveats

A limitation in our analyses was the use of small species interaction networks (e.g., <100

nodes). Since networks with a small number of nodes and edges are generally more difficult to

classify than larger networks [46], we perhaps inadvertently increased the perceived topologi-

cal heterogeneity of species interaction networks as compared to some of the non-ecological

networks. Regardless, the crime networks we used were of similar size to species interaction

networks (Table A in S1 Appendix), but were less topologically heterogeneous (Table 3 and

Fig 4). Clearly then, it was still possible to find topological consistency even in small networks,

but less so when networks were both small and ecological. This suggests that the topological

heterogeneity in species interaction networks created by different sets of researchers was due

to more than just the difficulty of classifying small networks, but likely also from biological

and environmental drivers, sampling strategies, and network construction methods classes of

heterogeneity, which reused networks created by different sets of researchers are especially

prone to. Importantly, this same problem of using small networks is also relevant when apply-

ing any other types of metrics to ecological networks, e.g., nestedness and modularity.

Although we generally failed to find pervasive and coherent topology within species interac-

tion networks created by different sets of researchers, we highlight that our results do not nec-

essarily invalidate patterns others have found (e.g., high nestedness in plant–animal networks
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[66]). Instead, these patterns are perhaps true under strict conditions, such as controlling for

the unwanted differences in topology between studies when reusing their networks.

Conclusion

Species interaction networks created by different sets of researchers likely suffer from compari-

son problems due to many sources of topological heterogeneity, i.e., via biological and envi-

ronmental drivers, sampling strategies, or network construction methods classes of

heterogeneity. Quantitatively, our findings show that these species interaction networks are

remarkably topologically diverse and that we should be especially careful when reusing this

source of data for deducing rules of community assembly, perhaps by controlling for the publi-

cation source of each network.
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S1 Appendix. Detailed and additional methods, supplementary figures, and tables.

(PDF)
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environment relationships: A review with guidelines. Basic Appl Ecol. 2022; 61:102–115.

27. Vázquez DP, Peralta G, Cagnolo L, Santos M. Ecological interaction networks. What we know, what we

don’t, and why it matters. Ecol Austral. 2022; 32:670–697.

28. Paine RT. Road maps of interactions or grist for theoretical development? Ecology. 1988; 69(6):1648–

1654.

PLOS BIOLOGY Topological heterogeneity of networks created by different researchers

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002068 April 3, 2023 15 / 17

https://doi.org/10.1111/brv.12366
https://doi.org/10.1111/brv.12366
http://www.ncbi.nlm.nih.gov/pubmed/28941124
https://doi.org/10.1371/journal.pcbi.1007076
http://www.ncbi.nlm.nih.gov/pubmed/31246974
https://doi.org/10.1111/gcb.15474
http://www.ncbi.nlm.nih.gov/pubmed/33274540
https://doi.org/10.1111/ele.13623
http://www.ncbi.nlm.nih.gov/pubmed/33073900
https://doi.org/10.1093/gigascience/giac043
https://doi.org/10.1093/gigascience/giac043
http://www.ncbi.nlm.nih.gov/pubmed/35639882
https://doi.org/10.1371/journal.pbio.3002068


29. Polis GA. Complex trophic interactions in deserts: An empirical critique of food-web theory. Am Nat.

1991; 138(1):123–155.

30. Pringle RM, Hutchinson MC. Resolving food-web structure. Annu Rev Ecol Evol Syst. 2020; 51(1):55–

80.

31. Welti EAR, Joern A. Structure of trophic and mutualistic networks across broad environmental gradi-

ents. Ecol Evol. 2015; 5(2):326–334. https://doi.org/10.1002/ece3.1371 PMID: 25691960
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