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Despite evidence that seasonal variation may lead to the persistence of competing spe-
cies, studies on the effect of seasonality on community network structures are sparse. 
Identifying whether seasonal network changes are the result of turnover or rewiring 
(i.e. rearrangement of interactions among species), also remains understudied in multi-
trophic communities. Using species abundance data for 38 species over three years 
(from nine sites across central/eastern United States) and a novel tree-based inference 
method, we constructed seasonal networks for a multi-trophic freshwater stream fish 
community. We found that seasonality influences species interactions, particularly 
through rewiring (81%) as compared to species turnover (19%). Moreover, the num-
ber of rewiring interactions was best explained by fish status as a piscivore/non-pisci-
vore and species maximum length (R2 = 0.41). Our findings suggest that rewiring may 
be a dominant process in stream fish communities experiencing seasonal environments 
and that traits linked to trophic-level could be a good indicator of a species contribu-
tion to rewiring. As networks dominated by rewiring may be more robust, this net-
work approach could be a valuable conservation tool for identifying which biological 
relationships must be retained for communities to avoid extinction.

Keywords: interaction networks, joint species distribution model, NEON data, 
seasonality

Introduction

Ecologists recognize that species interactions are a cornerstone in determining bio-
diversity and ecosystem functioning (Bascompte and Jordano 2007, Goudard and 
Loreau 2008). Particularly, species interactions are central in the evaluation of com-
munity stability which can be measured using a system’s resilience, robustness and 
resistance to perturbations (Ives et al. 1999, Ives and Carpenter 2007, Donohue et al. 
2013). Indeed, interactions can mediate the negative effects of environmental change 
(Brooker 2006, Suttle  et  al. 2007) and hence are essential for continued ecosystem 
persistence in the face of global change.

Species interactions vary across both space and time (Hagen  et  al. 2012, 
Rasmussen et al. 2013, Tylianakis and Morris 2017, Pellissier et al. 2018, Olivier et al. 
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2019). Temporal heterogeneity, in particular seasonality, has 
been invoked to explain biodiversity and community struc-
ture (Tonkin et al. 2017). For example, seasonality has been 
shown to minimize competitive interactions and help stabi-
lize total species abundances (Shimadzu et al. 2013), as well 
as play a role in maintaining structure and diversity in com-
munities (Fitzgerald et al. 2017). Consequently, as environ-
ments experience regular seasonal oscillations (Tonkin et al. 
2017), the influence of seasonality on species interactions is 
pervasive (McMeans et al. 2015).

From a community perspective, species interactions can 
be analyzed using network theory and seasonality can be 
incorporated by constructing and comparing separate spe-
cies interaction networks representing different seasons 
(CaraDonna et al. 2017). The properties of seasonal species 
interaction networks can then be assessed based on their 
topological differences due to species turnover and interac-
tion rewiring (i.e. the changes in the interactions between the 
same species across space or time despite both species remain-
ing present) (Poisot et al. 2012). While seasonal species turn-
over or rewiring may be more dominant in a system, they 
act in concert (Alarcón  et  al. 2008, Petanidou  et  al. 2008, 
Olesen  et  al. 2011, CaraDonna  et  al. 2017, Schwarz  et  al. 
2020). Identifying the relative contribution(s) of each to 
seasonal network topology is important as systems domi-
nated by rewiring may be more robust to perturbations 
(Kaiser-Bunbury et al. 2010, Saavedra et al. 2016, Vizentin-
Bugoni et al. 2020). Additionally, as traits have been shown 
to be an important driver of ecological network structure 
(Eklöf et al. 2013), determining how species traits relate to 
seasonal rewiring is a critical and unexplored component for 
understanding ecosystem dynamics.

Temperate freshwater stream ecosystems are well-suited 
to study the effects of seasonality as they experience regular 
seasonal variations from differences in shading, temperature, 
disturbance and productivity (Thompson and Townsend 
1999). This strong influence of seasonality can have conse-
quences for fish community assemblages (Junk et al. 1989, 
Peterson et al. 2017), making multi-trophic stream fish com-
munities (Winemiller 1990, Peterson  et  al. 2017) an ideal 
system for studying seasonal rewiring. However, observa-
tional interaction data may not be accessible.

Indeed, due to the sampling effort required (Alarcón et al. 
2008) and the difficulty in observing certain types of interac-
tions (e.g. competition) (Faisal et al. 2010), few systems have 
the observational data required to produce observed tem-
poral interaction networks. These challenges often restrain 
seasonal species interaction networks to few trackable sys-
tem such as plant–pollinator networks (Alarcón et al. 2008, 
Petanidou et al. 2008, Olesen et al. 2011, Burkle et al. 2013, 
2016, Rasmussen et al. 2013), but see Baird and Ulanowicz 
(1989), Yodzis and Winemiller (1999), Carnicer et al. (2009), 
Saavedra  et  al. (2016), Lopez  et  al. (2017), Peterson  et  al. 
(2017), McMeans et al. (2019) for notable exceptions.

To palliate the limitations related to direct interaction data, 
inferential methods that estimate species interaction networks 
have been proposed as an alternative to their empirically 

derived counterpart (Morales-Castilla et al. 2015). Inferential 
methods are reproducible, allow for a wider range of species 
given they require less sampling effort, and can detect inter-
actions that are not readily observable (Faisal  et  al. 2010). 
While most inferred ecological interaction networks are con-
structed using species co-occurrence methods, they have been 
criticized for elucidating false interactions and for failing 
to detect true pairwise species interactions (Blanchet  et  al. 
2020). A false interaction may arise due to species respond-
ing similarly to the same environmental factors (Peres-
Neto et al. 2001) while true interactions may not be detected 
due to the coarseness of presence/absence data (Sander et al. 
2017). Joint species distribution models (Pollock et al. 2014, 
Ovaskainen et al. 2016) have been touted as a more robust 
method to infer community structure as they incorporate 
abiotic factors into their analysis (D’Amen  et  al. 2018). 
However, these models are also often built using co-occur-
rence data and therefore suffer the same limitations as other 
methods that rely on presence/absence data to infer species 
interactions (Blanchet  et  al. 2020). A promising approach 
proposed by Momal  et  al. (2020) addresses limitations of 
presence/co-occurrence data by utilizing species abundances 
(instead of presence/absence data) and environmental covari-
ates within a joint species distribution modeling framework. 
Including abundance measures provides richer information 
for capturing interactions (Blanchet  et  al. 2020) while the 
inclusion of environmental factors helps prevent spurious 
interactions in the network.

In this paper, we investigate seasonal changes in a multi-
trophic freshwater stream fish community by creating seasonal 
networks using stream fish abundances (NEON 2020) and a 
novel tree-based inference method proposed by Momal et al. 
(2020). Using this method, we constructed two inferred fish 
interaction networks for Fall and Spring and examined their 
topological differences. Specifically, our objectives were to: 1) 
quantify the influence of seasonal interaction rewiring and 
species turnover (i.e. β-diversity); and, 2) evaluate whether 
seasonal changes in species interactions were related to spe-
cies-specific traits.

Material and methods

Overview

Using the sampled freshwater fish abundances carried out 
by the National Science Foundation’s National Ecological 
Observatory Network (NEON), we analysed abundance 
data by season (either Fall or Spring). Due to convergence 
issues in the network inference methods, yearly information 
had to be ignored during network construction. To ensure 
that year did not substantially influence the dynamics of the 
system, LASSO Poisson regressions (Friedman  et  al. 2010) 
were used to test the effect of year on species abundances. We 
found that the addition of year did not substantially improve 
the species abundance predications, allowing us to pool data 
based on the season the sample was taken. Inferred seasonal 
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interaction networks were created via a two step-process: 1) 
construct Fall and Spring Poisson lognormal (PLN) models 
(Chiquet  et  al. 2018, 2019), a type of joint species distri-
bution model that measure species interactions while con-
trolling for environmental factors; and 2) apply the EMtree 
algorithm (Momal  et  al. 2020) which uses the fitted PLN 
models to create seasonal species interaction networks, using 
tree structured graphical models. We then quantified spe-
cies turnover and rewiring using a measure of β-diversity 
(Poisot et al. 2012) across the two seasonal networks. Finally, 
we investigated (using linear regressions) how species-specific 
traits could be used to explain the total number of interac-
tions classified as rewiring, and species turnover.

Fish data

Stream fish abundances were obtained from the ‘Fish electro-
fishing, gill netting and fyke netting counts’ dataset provided 
by NEON (2020). This dataset contains Fall and Spring 
stream fish abundances made via electrofishing under strict 
sampling protocols (Jensen  et  al. 2019). Additionally, this 
dataset included abiotic data such as environmental, geo-
graphic and sampling design factors (e.g. date of sampling, 

water temperature, dissolved oxygen, latitude) and fish length 
and fish weight data for each fish caught, for 28 aquatic mon-
itoring locations across the United States.

To reduce yearly variation across seasons when pooling 
data into seasons, we only included sites that had consecu-
tive seasonal measurements within a year, i.e. both Fall and 
Spring abundance measures made per year. Thus, our analy-
sis used abundance samples from nine sites that spanned the 
United States, between 2017 and 2019 (Fig. 1).

The abundance dataset contained taxonomic information, 
but samples varied on the level of identification. Hence, we 
restricted our analyses to species with species-level identifica-
tion as we were concerned that a higher taxonomic group-
ing would obscure key biological interactions. We excluded 
samples from the analysis if environmental conditions were 
not recorded.

For our trait analysis, we obtained species-specific traits 
from FishTraits (Frimpong and Angermeier 2009) and 
obtained species’ maximum length and maximum weight 
from the NEON dataset containing the samples used to con-
struct our networks. FishTraits is an extensive database that 
contained traits for our species except for Etheostoma lachneri, 
which we supplemented with those of Etheostoma raneyi, a 

Figure 1. (Top) The nine NEON stream sampling locations across the United States used in this study; (bottom) monthly dates of freshwa-
ter fish abundance sampling for each of the nine sites used, where green boxes indicate Spring month dates, yellow boxes indicate Fall month 
dates, and the numbers inside the boxes are the number of days in which that month was sampled. Each day sampled represents multiple 
reaches sampled for abundances at that site.
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close relative (Ross 2012). Furthermore, we obtained feed-
ing behaviour information from NatureServe (NatureServe 
2020) where fish were classified as belonging to at least one of 
the following non-exclusive categories: 1) non-feeder (non-
parasitic lamprey species), 2) herbivore, 3) invertivore and 4) 
piscivore (Table 1).

Testing for yearly abundance trends

We tested for yearly trends in each pooled seasonal dataset 
using LASSO Poisson regression models (Friedman  et  al. 
2010) on each species data. LASSO Poisson models are a 
type of penalized generalized linear model for count data 
that forces less contributive coefficients to be zero. Generally, 
for each species we compared the predictive ability of 1) Site 
name and 2) Site name + Year, to test for yearly trends and to 
determine if pooling data across years into seasons was appro-
priate. Site name was included in both models to capture 
site-specific abiotic measurements as well as account for the 
variability of species presence/absence across sites. The with-
held seasonal datasets used for predictive purposes included 
each site’s most recent abundance sample for that season. We 
determined the ‘best’ model by calculating their predictive 
performance on the withheld dataset. We used two met-
rics for predictive performance: the cumulative root mean 
squared error (RMSE) and the cumulative RMSE for spe-
cies with abundances greater than 0 in the prediction data-
set (‘RMSE obs > 0’). All LASSO Poisson regression models 
were implemented using ‘glmnet’ package (Friedman  et  al. 
2010).

Constructing and testing Poisson lognormal  
(PLN) models

To model joint species abundances, required for inferring sea-
sonal interaction networks, we first fitted and tested a suite 
of PLN models (Chiquet et al. 2018, 2019) on the pooled 
seasonal dataset. PLN models are joint species distribution 
models that can be used to infer joint species abundances 
and interactions using environmental factors and species’ 
abundance data. Here, we built models that included differ-
ent combinations of 1) water temperature during sampling, 
2) dissolved oxygen during sampling, 3) specific conductiv-
ity during sampling, 4) elevation at sampling site, 5) date 
of abundance sampling, 6) latitude at abundance sampling 
and 7) site name. We also included sampling effort in our 
models as excluding this effort reduces the comparability of 
abundance samples measured at different places and times 
(Chiquet et al. 2019). Sampling effort was included for each 
abundance sample and was pre-calculated as a sum of the 
total counts of fish caught, a common approach for including 
sampling effort in models (Paulson et al. 2010). Altogether, 
the nine PLN models built for each season accounted for the 
following environmental variable(s): Site name, Water tem-
perature, Dissolved oxygen, Elevation, Specific conductivity, 
Site name + Water temperature, Site name + Dissolved oxygen, 
Site name + Elevation and Site name + Specific conductivity.

We evaluated our seasonal PLN models by using non-
traditional Bayesian information criterion (BIC), an informa-
tion–theoretic approach; and by calculating their predictive 
performance on withheld future abundance data. Note the 

Table 1. Fish feeding behaviours and total abundances for Fall and Spring in years 2017–2019.

Species Feeding behaviours†

Total abundance
Species Feeding behaviours†

Total abundance
Fall Spring Fall Spring

Ameiurus melas Herb, Invert 11 22 Lepomis cyanellus Invert, Pisc 349 354
Ameiurus natalis Herb, Invert, Pisc 64 53 Lepomis macrochirus Invert 55 44
Campostoma 

anomalum
Herb 880 792 Lepomis megalotis Invert, Pisc 32 52

Chrosomus 
erythrogaster

Herb 446 439 Luxilus chrysocephalus Herb, Invert 31

Clinostomus 
funduloides

Invert 65 200 Micropterus salmoides Invert, Pisc 5

Cottus bairdii Herb, Invert, Pisc 533 642 Moxostoma carinatum Invert 15
Cottus carolinae Invert, Pisc 134 193 Nocomis leptocephalus Herb, Invert 86 35
Cottus girardi Invert 796 953 Notropis baileyi Invert 816 704
Etheostoma lachneri Invert 73 301 Notropis volucellus Herb, Invert 71
Etheostoma nigrum Invert 301 Noturus exilis Invert 98 98
Etheostoma spectabile Invert 668 780 Noturus funebris Invert 37 39
Etheostoma stigmaeum Invert 38 Noturus leptacanthus Invert 23 13
Etheostoma swaini Invert 8 Percina nigrofasciata Invert 69 37
Fundulus notatus Herb, Invert 467 528 Pimephales promelas Herb, Invert 150 163
Fundulus olivaceus Herb, Invert 70 85 Rhinichthys atratulus Invert 3559 3087
Gambusia affinis Herb, Invert 1154 466 Rhinichthys cataractae Invert 417
Hypentelium etowanum Invert 13 Salmo trutta Invert, Pisc 41 16
Ichthyomyzon gagei Non-Feed 142 125 Salvelinus fontinalis Invert, Pisc 84 53
Lampetra aepyptera Non-Feed 131 170 Semotilus atromaculatus Invert, Pisc 1328 938

†1) Non-feed: non-feeding adults correspond to non-parasitic lamprey species, 2) Herb: herbivore, 3) Invert: invertivore and 4) Pisc: piscovore.
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non-traditional BIC scores represent the variational lower 
bound of the BIC, which account for the model’s variational 
log-likelihood and its number of parameters (see Momal et al. 
2020 for more details). Overall, higher scores indicate better 
fitting models. To assess predictive performance, we predicted 
species abundances and compared the RMSE and RMSE obs 
> 0. The models with the best BIC score and lowest RMSE 
scores were the models selected. As we use both an in-sample 
and out-of-sample measurement (i.e. information–theoretic 
techniques and RMSE on withheld data), the models should 
have higher accuracy and lower uncertainty (Bodner  et  al. 
2020). All construction and testing of PLN models were done 
through the ‘PLNmodels’ package (Chiquet et al. 2018, 2019).

Species interaction networks from EMtree

Separate Fall and Spring species interaction networks were 
inferred using the EMtree method proposed by Momal et al. 
(2020). Generally, EMtree combines both 1) PLN models 
to represent the joint distribution of species abundances and 
2) spanning tree graphical models to create undirected spe-
cies interaction networks, where a spanning tree is defined 
as a subgraph of a network that connects all nodes with the 
minimum number of possible connections (Dale and Fortin 
2014). Note that while the number of interactions between 
all nodes is minimized and the minimum bound on the num-
ber of interactions a node may have in a tree is one, a node 
may have more than one or two interactions.

Network inference can be challenging due to the huge 
number of possible graphs for a given set of nodes (e.g. 
1013 undirected graphs given 10 nodes). All network infer-
ence approaches try to infer the underlying true network 
configuration but are impeded by this vast number of con-
figurations (Momal  et  al. 2020). To overcome this issue, 
EMtree employs a spanning tree-based approach, which is 
a technique designed to reduce the possible number of con-
figurations given by the PLN model’s joint distribution of 
abundances, to make inference tractable in the graph space 
(Momal et al. 2020). The links in the spanning tree represent 
possible interactions between species. EMtree constructs fit-
ted species interaction networks by averaging across all span-
ning trees and employs an advanced tree-based algorithm to 
maximize the likelihood of the inferred species interactions 
from the PLN models. The EMtree approach combines both 
pairwise potential direct (e.g. predator–prey interactions) and 
indirect (e.g. indirect competition) interactions, represented 
as a single undirected connection between species’ nodes. In 
the resulting networks, each connection was weighted with 
a value between zero and one, representing the conditional 
probability of each connection being part of the ‘true’ under-
lying network. We assumed that if an interaction had a non-
zero weight, i.e. it is suspected to be part of the network, it 
existed in the network.

To create the network, it was necessary to select a minimum 
threshold as a cut-off for inferring species connections. This 
threshold can be used as a metric for assessing the reliability of 
connections with higher thresholds indicating higher reliability. 

Nonetheless, a guideline is to use the highest threshold before 
a node (i.e. species) loses all connections (Bassett et al. 2006). 
From a biological perspective, a connected network can 
emerge when just a few generalist species are present (Martín 
González  et  al. 2010). Hence, we created networks using 
thresholds between 0; the minimum possible threshold assum-
ing virtually all connections, and 1; the maximum possible 
threshold producing no connections, and chose the network 
built with the highest threshold that remained connected. We 
increased network robustness by iteratively resampling the net-
work 100 times. The EMtree approach was implemented using 
the ‘EMtree’ package (Momal et al. 2020), and network visual-
ization was accomplished through the ‘igraph’ package (Csárdi 
and Nepusz 2006).

Beta diversity

To estimate species turnover and rewiring in our seasonal net-
works, we quantified the β-diversity across Fall and Spring. 
We adopted a β-diversity metric, βWN, which measured the 
interaction turnover between two networks, with 0 ≤ βWN ≤ 
1 (Poisot et al. 2012). This metric can be represented by the 
following equation:

bWN
a b c

a b c
=

+ +
+ +( )

-
2 2

1
/

	 (1)

where a was the number of interactions shared between net-
works (Fall and Spring), and b and c were the number of 
interactions unique to each network, respectively. Hence, 
larger values of βWN indicated a greater difference between 
the two networks. We further isolated the effects of species 
turnover, βST and rewiring, βRW, from βWN using the equation 
βWN = βST + βRW. Additionally, we assessed total species dis-
similarity between seasons (βS) using Eq. 1, where a, b and c 
were the appropriate species identities.

Total species turnover, total rewiring and species 
traits

To calculate the total number of species turnover and rewir-
ing connections for each species, we identified each chang-
ing connection in each seasonal network as being one of the 
following: 1) ‘rewiring’, where two species present in both 
seasons were linked in one season but not in the other; or 
2) ‘species turnover’, where one or both species were present 
only in a single season, and the connection existed only for a 
single season. All connections preserved across seasons were 
classified as ‘maintained’.

Using linear models, we examined the relationships 
between the total number of rewiring (i.e. sum of the connec-
tions classified as rewiring), and the total number of species 
turnover connections (i.e. sum of the connections classified 
as species turnover), with species traits, abundances, feeding 
preferences/trophic-level and habitat preferences.

All analyses conducted were done in R ver. 4.0.2 (R Core 
Team).
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Results

Data

We restricted our analysis to species that appeared in a sea-
sonal dataset at least five times as fewer than five occurrences 
resulted in convergence issues when using the EMtree algo-
rithm. This restriction resulted in 32 species in the Fall, 34 
species in the Spring, with 29 species common to both sea-
sons (Table 1), which contributed to a seasonal species dis-
similarity score of βS ≈ 0.134.

Testing for yearly abundance

In the Fall, the LASSO Poisson regression of Site name 
[RMSE: 10.353, RMSE obs > 0: 27.135] performed bet-
ter than Site name + Year [RMSE: 17.935, RMSE obs > 0: 
34.019] (Table 2). Furthermore, in the Spring, the LASSO 
Poisson regression model of Site name [RMSE: 7.350, RMSE 
obs > 0: 19.722] performed equally well as Site name + Year 
[RMSE: 7.112, RMSE obs > 0: 19.276] (Table 2). Hence, 
Year did not contribute significantly to predicting Fall or 
Spring abundances and thus yearly variation was not deemed 
as a significant factor for either season.

PLN models

Using each respective pooled seasonal datasets, the three 
PLN models with highest BIC scores for both seasons 
were Site name (Fall BIC: −6419, Spring BIC −8159), 
Site name + Water temperature (Fall BIC: −6473, Spring 
BIC: −8237) and Site name + Dissolved oxygen (Fall BIC: 
−6456, Spring BIC: −8219) (Table 2). Site name also had 
the best BIC score and predictive performance in both the 
Fall (RMSE: 4.2, RMSE obs > 0: 11.1) and Spring (RMSE: 
5.0, RMSE obs > 0: 12.4). Hence, the Site name PLN mod-
els, representing the inherent abiotic and spatial factors not 
measured at each site, were selected as best for both seasons.

Inferred seasonal networks from EMtree

We inferred each seasonal species interaction networks using 
EMtree paired with the Fall and Spring Site name PLN mod-
els (Fig. 2). We tested potential threshold cut-offs for each 
network and determined the highest appropriate threshold 
to be 0.6, since above this value the network became dis-
connected. Furthermore, as many species in our community 
are generalists, we expected that the underlying network to 
be connected (Martín González et al. 2010). Thus, all net-
work metrics presented correspond to seasonal networks con-
structed with a threshold of 0.6.

Beta-diversity

The topological changes across seasons were apparent when 
quantifying topological change using β-diversity metrics. 
Specifically, interaction turnover was βWN ≈ 0.62. In other 
words, there was a relatively large difference in the topol-
ogy of the Fall and Spring networks. This seasonal topologi-
cal change was largely driven by interaction rewiring (βRW) 
rather than species turnover (βST). In particular, we found 
that βRW/βWN ≈ 81%, whereas βST/βWN ≈ 19%.

Total species turnover, total rewiring and species 
traits

Using linear regression models, we investigated how differ-
ent species traits and abundances influenced the total num-
ber of rewiring (blue bars of Fig. 3). While we did not find 
any meaningful models regarding key life history traits or 
species’ abundances, we found that species traits related to 
maximum length and feeding helped explain around 41% 
of the total number of rewiring. Specifically, total number 
of rewiring had a significant and negative relationship with a 
species’ piscivore status and a significant positive relationship 
with the interaction between maximum length of a species 
and its piscivore status, Fig. 4 (βmax length = −0.03, p > 0.1; 
βpiscivore = −6.10, p < 0.01; βmax length × piscivore = 0.04, p < 0.01; 

Table 2. Model fit (BIC scores, pseudo-R2), and prediction error (RMSE, RMSE obs > 0) for each Poisson lognormal (PLNmodels) and Poisson 
regression model (glmnet) using n = 32 species for Fall data, and n = 34 for Spring data. Models were constructed using 74 (Fall) and 94 
(Spring) observations where a single observation is a single sampling abundance measure for multiple species made at a specific point in a 
stream at one of the nine NEON sampling locations at a specific day. ‘RMSE’ (root mean square error) indicates the predictive ability of each 
model and predicts for n = 32 (Fall) and n = 34 (Spring) species based on the most recent observations for each of the nine NEON sites 
(n = 288 [Fall] and n = 306 [Spring]). ‘RMSE obs > 0’ indicates the predictive ability (root mean squared error) of each model for presence-
only abundances (i.e. observations > 0) (n = 38 [Fall] and n = 36 [Spring]).

Model type Variables BIC score RMSE RMSE obs > 0 R2

Fall PLN Site name −6418.470 4.230 11.107 0.93
Site name + Water temperature −6472.502 6.093 16.285 0.93
Site name + Dissolved oxygen −6456.427 6.138 16.548 0.92

glmnet Site name 10.353 27.135
Site name + Year 17.935 34.019

Spring PLN Site name −8158.602 5.004 12.365 0.94
Site name + Water temperature −8236.974 6.663 18.038 0.94
Site name + Dissolved oxygen −8219.048 4.900 12.897 0.94

glmnet Site name 7.350 19.722
Site name + Year 7.112 19.276
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Figure 2. Threshold 0.6 of the Fall interaction network (n = 32 species) and the Spring interaction network (n = 34 species) of a freshwater 
fish stream community across nine sampling locations in the United States. Node colour corresponds to species feeding behavior: 1) light 
blue: non-feeding adults, 2) red: invertivore and piscivore, 3) light green: herbivore, 4) brown: invertivore, 5) dark yellow: herbivore and 
invertivore and 6) salmon: herbivore, invertivore and piscivore.

Figure 3. Number of maintained interactions and altered interactions for piscivores (red text) and non-piscivores (black text), including 
total number of rewiring (blue) and total number of species turnover interactions (purple), in each season using a network threshold of 0.6.
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adjusted R2 = 0.41). The negative relationship between pisci-
vore status and the total number of rewiring suggested that 
non-piscivores have a greater number of rewiring than pisci-
vores when controlling for the maximum length of a species. 
Interestingly, despite maximum length not being significant, 
its interaction with piscivore status is significant indicat-
ing that for piscivores, there is a strong positive relationship 
between the total size and the number of rewiring that does 
not exist for the non-piscivores.

We also note that while no specific traits or species abun-
dances explained the total number of species turnover con-
nections (purple bars of Fig. 3), approximately 80% of fish 
present for only a single season had preferences for large rivers. 
This percent is significantly higher than the approximately 
45% of the non-turnover fish that shared this preference.

Discussion

The role of seasonality in shaping species interaction networks 
requires better assessment for understanding the stability and 
function of community assemblages. So far, most studies ana-
lyzed seasonality in small-size organismal bipartite networks 
(e.g. plant–pollinator networks), yet limited evidence exists 
on how seasonality shapes multi-trophic networks across com-
munities of larger species. Despite increasing evidence that 
topological changes arise due to rewiring and species turnover 
(Alarcón et al. 2008, Petanidou et al. 2008, Rasmussen et al. 
2013, Lopez  et  al. 2017, Schwarz  et  al. 2020), as of yet, 

identifying which process is dominant and more critically, 
quantifying the contributions of each process, is rarely done 
across seasons for multi-trophic networks. Here, we provide 
a study on inferred seasonal multi-trophic networks that pro-
vides evidence of seasonal change using interaction turnover, 
and that seasonal rewiring may be a driving process of com-
munity changes in stream fish communities.

Given the strong evidence of seasonality in stream fish 
networks (Thompson and Townsend 1999, Peterson  et  al. 
2017), unsurprisingly, we found evidence that seasonality 
influenced our network structure. Indeed, the reported sea-
sonal consumption of the most abundant aquatic inverte-
brates (Pinto and Uieda 2007), and the seasonal dietary shifts 
of ominvirous and carnivorous fish (Akin and Winemiller 
2006) highlight the seasonal opportunistic feeding behav-
iour of many fish species. The differences in network struc-
ture we found between seasons are exemplified by the degree 
of its interaction turnover across seasons. As a score of zero 
indicates networks are identical and a score of one indicates 
that networks have no common interactions, our score of 
βWN = 0.62, indicates a relatively high differentiation between 
our seasonal networks.

Beyond classifying network change, identifying the pri-
mary drivers of species interactions is essential for predicting 
community structure. In our study, we found that seasonal 
topological changes to our inferred network were primarily 
driven by interaction rewiring (81%) with a small contribu-
tion by species turnover (19%). Consequently, the level of 
rewiring and turnover we found in our study mirrors results 

Figure 4. Relationship between the maximum length of the fish species (in mm) and its status as a piscivore against the total number of 
inferred rewiring for each species, using a network threshold of 0.6. For non-piscivores, the maximum length of the species appears to have 
a negligible effect on the total number of rewiring, however for piscivores, there appears to be a strong positive relationship indicating that 
the greater the maximum length of the species, the greater the total number of rewiring for that species (non-piscivore: n = 20, with n = 5, 
n = 13 and n = 2 for max length levels, respectively, and piscivore: n = 8, with n = 1, n = 2 and n = 5 for max length levels, respectively).
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from other systems. In particular, the amount of seasonal 
rewiring and seasonal turnover in our study is comparable 
to the weekly and mean yearly interactions found in the 
rewiring-dominated plant–pollinator networks studied by 
CaraDonna et al. (2017). While the ratio of seasonal species 
to those present in both seasons in our study is lower, this 
difference in species dissimilarity is likely in part the result of 
our requirement that species need to be sampled at least five 
times. The inclusion of these rare species would likely increase 
our species dissimilarity measure but would not have changed 
our overall network structure since they need to be abundant 
enough to warrant interactions (Poisot et al. 2015). Thus, our 
study contributes to the growing literature of the potential 
ubiquity of rewiring across different systems. However, we 
recognize that high levels of rewiring may be more common 
in some systems. Therefore, we hope future studies continue 
to quantify rewiring across study systems to further test its 
ubiquity and to identify cases and species where it may not 
be as dominant.

Despite highlighting the need to resolve networks along 
a temporal dimension, our results provide a general predic-
tion for how these seasonal communities may respond to dis-
turbances. If species subject to seasonality are more strongly 
driven by rewiring, we may also expect these species to be 
more robust when subject to other types of disturbances 
(CaraDonna et al. 2017). For example, Kaiser-Bunbury et al. 
(2010) found that in plant–pollinator networks, rewiring 
increased community robustness when faced with commu-
nity species loss, Saavedra et al. (2016) found that seasonal 
interactions play a key role in maintaining the homeostatic 
state of ecological communities, and Vizentin-Bugoni et al. 
(2020) found that rewiring increased estimated robustness in 
plant–humming bird networks. Indeed, it would be of inter-
est to conservation managers to determine if their systems 
are robust to future perturbations, given that their system 
also undergoes seasonal rewiring. However, while in general 
we expect rewiring to have a stabilizing effect, rewiring has 
been shown in some cases to have a negative effect on the 
persistence of both natural and computer-generated food 
webs (Gilljam  et  al. 2015). Hence, future studies should 
explore whether stability due to rewiring holds for different 
disturbance types, different ecosystems/organisms, and under 
which conditions it switches from a stabilizing to a destabiliz-
ing effect.

Total rewiring, total turnover and species traits

As fish species’ traits may have high plasticity (Frimpong and 
Angermeier 2010), detecting relationships between traits and 
fish interaction dynamics can be an especially arduous task. 
Furthermore, given that rewiring can be both an active and/
or passive process, it is perhaps especially difficult to identify 
key traits describing their ability to rewire. For example, a 
predator will actively rewire when it switches a prey item, 
whereas its prey passively rewires in response. In this case, we 
do not expect the predator and prey to exhibit the same traits. 
As traits related to the passive and active process of rewiring 

likely differ, we do not expect to find an all-encompassing 
relationship between any single trait and the total number 
of rewiring.

Nevertheless, the significant relationship we found 
between the total number of rewiring and the interaction 
between the maximum length of a species and its pisci-
vore status (R2 = 0.41) likely captures traits associated with 
active rewiring. Indeed, larger species of piscivores generally 
do consume a larger range of prey size than their smaller 
counterparts (Gaeta  et  al. 2018). This active rewiring may 
also capture the stabilizing ability of piscivores. Since these 
large mobile predators are able to track and exploit multiple 
abundant prey across multiple trophic levels, piscivorous fish 
can promote food web stability through reduced interaction 
strength and reduced predation pressure when prey density is 
low (Kondoh 2003, McCann et al. 2005). In addition, when 
maximum length was held constant, we also captured a sig-
nificant negative relationship between piscivore status and 
the total number of rewiring. This negative relationship indi-
cates that overall, non-piscivores have a higher total number 
of rewiring which may be in part due to many smaller non-
piscivores passively rewiring with a few larger key predators. 
Additionally, as our network captures more than food web 
dynamics, this negative relationship may also be capturing 
rewiring due to competition and other biological interac-
tions. If this is the case, lower trophic levels may be more 
heavily competing with different species for space and food 
across seasons whereas piscivores may maintain competitive 
interactions with the same species year-round.

We were unable to find any significant traits related to 
species turnover. This is not particularly surprising as unlike 
rewiring interactions, turnover interactions are dependent 
upon the arrival and departure of only nine species in our sys-
tem. We expect that an increased species turnover rate would 
allow for relevant traits to be more easily detected. Despite 
not finding any significant traits related to the total turnover 
interactions, interestingly, all turnover species were those that 
preferred large rivers. Given this, we suspect that these turn-
over fish species may be seasonally migratory.

Limitations

The main limitation of our study is the dependence on 
inferred interactions from abundance data. As there are no 
direct observations of the interactions, there is always the 
possibility that these interactions do not exist. However, the 
benefits of approaches like the one used here, should not be 
overlooked. Despite there being no direct observations in our 
system, the inferred network approach allowed us to hypoth-
esize seasonal networks for a previously unexplored commu-
nity. In general, inferred network approaches not only allow 
us to reduce the resources required to infer species interactions 
but can propose interactions when observation is difficult 
(Faisal et al. 2010). Indeed, in our inferred seasonal network, 
we detected an interaction between S. trutta and S. fontina-
lis which had been hypothesized and only captured through 
experimental manipulation (Fausch and White 1981). Given 
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that S. trutta and S. fontinalis are heavily monitored, we could 
validate our proposed interaction. However, most fish spe-
cies are allocated fewer resources so there is little information 
available, particularly on their interactions. Ultimately, the 
inferred network approach allows us to generate new hypoth-
eses about how these unobserved species may be interacting. 
The next steps forward could be to validate some of these 
key inferred interactions using experiments or in the case of 
predator–prey interactions, gut content analysis.

Another potential limitation in our study is the pooling 
together of yearly data (Jordán and Osváth 2009). Ideally, 
we would have constructed networks for each season per 
year without pooling data, allowing us to accommodate 
both yearly and seasonal variation in our networks. However, 
given the data available, this was not possible given conver-
gence issues. To address the potential for yearly variation, 
we limited sites to those that had every seasonal abundance 
measurement between 2017 and 2019 and also ensured there 
were no substantial yearly trends in the abundance data using 
LASSO Poisson regression. In future, data collection efforts 
for these types of analyses should seek to collect greater abun-
dance data per year such that both seasonal and yearly net-
works can easily be created.

Applications

Given the increasing availability of temporal abundance 
measurements, the robust EMtree approach we use here will 
likely be a valuable tool in the future to further disentangle 
species interaction networks. In particular, since it has been 
suggested that food webs rewire in predictable ways due to 
climate change (Bartley et al. 2019), this method may be used 
to investigate how interaction networks rewire in response to 
climate change where species interaction information is not 
available. Moreover, since it is widely recognized that inter-
actions are the architecture of biodiversity (Bascompte and 
Jordano 2007), the maintenance of these interactions, even 
those that are seasonal, is a necessity to maintain ecosystem 
stability. In this regard, the approach we adopted for our 
analysis could be valuable for conservation as it can be used to 
hypothesize key biological relationships that must be retained 
for species to avoid extinction (Heinen et al. 2020).

Conclusion

The approach we take for network inference highlights the 
utility of non-traditional methods (e.g. species abundance 
data) to infer interactions and thus community structure. 
Although our network inference is not without its uncertain-
ties, we demonstrate how EMtree methods can be used to 
elucidate network structure. Overall, we find evidence that dif-
ferences in our seasonal networks appear to be driven mainly 
by rewiring as compared to species turnover. Additionally, 
while there is recognition that traits are important factors 
of community assembly our findings that maximum length 
and piscivore status contributes to a species’ number of rewir-
ing provide evidence that traits may influence how temporal 

interaction networks change. Finally, our study highlights 
the need to consider communities as evolving through time. 
Since seasonal change is capable of dramatically altering net-
work topology, failing to capture temporal heterogeneities 
may cause us to mischaracterize community structure and 
functions.
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