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Abstract

Despite general recognition that ecological communities are dynamic, few studies evaluate how

species interactions vary across time and space. Those that do commonly model and study the

topology of communities as species interaction networks. Due to the high cost of in situ observations,

researchers are often forced to reuse published open (i.e., freely available) species interaction networks

to test their ecological hypotheses. Reused networks, however, can be problematic to adopt as

data since they were likely built using differing methodologies and sampling protocols that are

underreported, leading to inherent topological differences that are difficult to account for. My PhD

aims to quantify the dynamic topology of species interaction networks and assess if open networks can

be effectively reused to understand their topological drivers. In Chapter 2, I use an inferential method

to construct seasonal multi-trophic networks from freshwater stream fish abundances collected

using standardized protocols. The resulting networks show significant topological changes, even

over short seasonal durations. In Chapter 3, I use a global dataset of open bipartite networks to

test whether topology is explained by seasonal climatic variability. I find that seasonality does not

structure networks; instead, an imperfect control variable for the amount of effort used to build each

network, sampling intensity, best explains topology. In Chapter 4, I reevaluate previously published

relationships suggesting abiotic and biotic variables explain open bipartite network topology. I

uncover again that sampling intensity better explains topology than multiple ecological variables.

In Chapter 5, I quantify topological similarity between open bipartite networks from Chapter 3 to

better attempt to identify drivers of their structure. I find open networks sourced from the same

publication are very topologically similar, highlighting the strong influence of publication-specific

approaches on the structure of species interaction networks. Likewise, in Chapter 6, I evaluate the

topological similarity between open food webs. I confirm again that the structure of open food webs

sourced from the same publication are very similar. Altogether, my thesis enhances understanding of

network dynamics and reveals the strong influence of publication on network structure, challenging

the unbridled reuse of open networks for deducing topological drivers.
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It is important that students bring a certain ragamuffin, barefoot, irreverence to their
studies; they are not here to worship what is known, but to question it.

Jacob Bronowski

The first principle is that you must not fool yourself and you are the easiest person to
fool.

Richard P. Feynman

iii



Acknowledgements

I want to begin by acknowledging my PhD supervisor Marie-Josée Fortin. Throughout my academic
journey, Marie-Josée has staunchly supported those ideas I have generated. As a mentor, Marie-Josée
has continuously guided, advocated, and inspired me to be a better researcher. Without your help,
I would not have achieved nearly as much as I have.

I also want to express my gratitude to all my previous undergraduate supervisors. Shawn Leroux
at the University of Ottawa (now at Memorial University) sparked my interest in quantitative
ecology—a spark that has clearly stayed with me. Additionally, Mair Zamir and Rob Corless at
Western University gave me the opportunity to learn essential mathematical techniques and develop
the intuition that has shaped my research in meaningful ways.

Thank you to Helen Rodd, Kitty Lam, and Jenn English for all your help. Your dedication to
helping students navigate the University’s administration is unmatched.

Much appreciation to all my committee members. To Marty Krkošek and Nicole Mideo: Your
attention to detail and thoughtfulness have significantly enhanced my thesis. I also want to extend
my gratitude to both Marc Cadotte and Njal Rollinson for their insightful questions and discussions
during my appraisal. Thank you to Nathan Kraft and Marc Cadotte (again) for being part of my
thesis defense. I appreciate the time and critical thought you have contributed to making my thesis
stronger.

Thank you to all past and present Fortin lab members who have contributed to making our
cohort truly special. To Peter Rodriguez and Tiziana A. Gelmi Candusso, thank you for being such
good friends throughout most of my thesis. I also want to extend my heartfelt thanks to those who
were part of the lab when I started. Specifically, thank you to Andrew Chin, Ariel Greiner, Korryn
Bodner, Carina Rauen Firkowski, and Russell Turner for all the great memories.

Finally, I want to thank my family. First and foremost, to my wife Korryn Bodner for the
unwavering support and countless discussions about networks. I could not have done it without you.
Thank you to Winston, Irwin, Little Min, Zorro, Wild, Furgus, Jazz, and Gabby for being loving
companions. Thank you to my parents that have supported me in my scholarly pursuits, which have
taken so long (two bachelors degrees and one PhD). It has now come to fruition.

iv



Chapter acknowledgements

The core of my thesis consists of five chapters, all of which have been published in academic journals.
As the first author of each paper, I was the lead investigator, performing the majority of the
conceptualization, analysis, and writing. Nevertheless, all co-authors contributed by assisting in
different aspects of each study, which have been invaluable in enhancing the quality of the research.
The five chapters are:

Chapter 2—Brimacombe, C., K. Bodner, and M.-J. Fortin. Inferred seasonal interaction rewiring
of a freshwater stream fish network. Ecography, 2021, 44:219–230.

Chapter 3—Brimacombe, C., K. Bodner, M. J. Michalska-Smith, D. Gravel, and M.-J. Fortin. No
strong evidence that modularity, specialization, or nestedness are linked to seasonal climatic
variability in empirical bipartite networks. Global Ecology and Biogeography, 2022, 31:2510–
2523.

Chapter 4—Brimacombe, C., K. Bodner, and M.-J. Fortin. How network size strongly determines
trophic specialization: A technical comment on Luna et al. (2022). Ecology Letters, 2022,
25:1914–1916.

Chapter 5—Brimacombe, C., K. Bodner, M. Michalska-Smith, T. Poisot, and M.-J. Fortin.
Shortcomings of reusing species interaction networks created by different sets of researchers.
PLOS Biology, 2023, 21:e3002068.

Chapter 6—Brimacombe, C., K. Bodner, D. Gravel, S. J. Leroux, T. Poisot, and M.-J. Fortin.
Publication-driven consistency in food web structures: Implications for comparative ecology.
Accepted: Ecology.

v



Table of Contents

Page

1 Introduction 1
1.1 General network history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Ecology and networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 About ecological networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Constructing species interaction networks . . . . . . . . . . . . . . . . . . . . 4
1.2.3 Topological measures of species interaction networks . . . . . . . . . . . . . . 4
1.2.4 Open species interaction networks . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.5 Seasonality and species interaction networks . . . . . . . . . . . . . . . . . . . 6

1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.1 Chapter 2:—Inferred seasonal interaction rewiring of a freshwater stream fish

network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.2 Chapter 3—No strong evidence that modularity, specialization, or nestedness

are linked to seasonal climatic variability in empirical bipartite networks . . . 7
1.3.3 Chapter 4—How network size strongly determines trophic specialization: A

technical comment on Luna et al. (2022) . . . . . . . . . . . . . . . . . . . . . 7
1.3.4 Chapter 5—Shortcomings of reusing species interaction networks created by

different sets of researchers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.5 Chapter 6—Publication-driven consistency in food web structures:

Implications for comparative ecology . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.6 Chapter 7—Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Inferred seasonal interaction rewiring of a freshwater stream fish network 9
2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Fish data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.3 Testing for yearly abundance trends . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.4 Constructing and testing Poisson lognormal (PLN) models . . . . . . . . . . 12
2.3.5 Species interaction networks from EMtree . . . . . . . . . . . . . . . . . . . . 13
2.3.6 Beta-diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.7 Total species turnover, total rewiring, and species traits . . . . . . . . . . . . 14

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.2 Testing for yearly abundance . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.3 PLN models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.4 Inferred seasonal networks from EMtree . . . . . . . . . . . . . . . . . . . . . 15
2.4.5 Beta-diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

vi



2.4.6 Total species turnover, total rewiring, and species traits . . . . . . . . . . . . 16
2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5.1 Total rewiring, total turnover, and species traits . . . . . . . . . . . . . . . . 17
2.5.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.7 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.8 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 No strong evidence that modularity, specialization, or nestedness are linked to
seasonal climatic variability in empirical bipartite networks 26
3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Data: Bipartite networks and climatic seasonality . . . . . . . . . . . . . . . . 29
3.3.2 Weighted network metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.2.1 Weighted modularity (∆Q) . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.2.2 Weighted specialization (∆H ′

2) . . . . . . . . . . . . . . . . . . . . . 30
3.3.2.3 Weighted nestedness (∆N) . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.3 Weighted network linear models . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.3.1 Plant-pollinator, and seed-dispersal linear mixed models (LMMs) . 31
3.3.3.2 Plant-pollinator, seed-dispersal, and host-parasite linear regressions

(LMs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.3.3 Testing for spatial autocorrelation in models for weighted structural

metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.4 Unweighted network metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.4.1 Redundancy analysis with unweighted networks . . . . . . . . . . . 34
3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.1 Weighted network linear models . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4.1.1 Plant-pollinator, and seed-dispersal linear mixed models (LMMs) . 34
3.4.1.2 Plant-pollinator, seed-dispersal, and host-parasite linear models

(LMs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.1.3 Higher sampling intensity networks: Plant-pollinator and seed-

dispersal linear models (LMs) . . . . . . . . . . . . . . . . . . . . . . 36
3.4.2 Redundancy analysis with unweighted networks . . . . . . . . . . . . . . . . . 36

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.7 Data and code availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.8 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.9 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
S3.10Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

S3.10.1Tests for spatial auto-correlation . . . . . . . . . . . . . . . . . . . . . . . . . 46
S3.10.1.1 Global Moran’s I for plant-pollinator networks . . . . . . . . . . . . 47
S3.10.1.2 Global Moran’s I for seed-dispersal networks . . . . . . . . . . . . . 54

vii



S3.10.1.3 Global Moran’s I for host-parasite networks . . . . . . . . . . . . . 61
S3.10.2Extension of Table 3.2, Table 3.3, and Figure 3.3 . . . . . . . . . . . . . . . . 65
S3.10.3Linear mixed models and linear regression models for explaining normalized

weighted metrics ∆Qn, ∆H ′
2,n, and ∆Nn . . . . . . . . . . . . . . . . . . . . 69

S3.10.4Linear regressions alternatives to the linear mixed models used in the
manuscript (i.e., Table 3.2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

S3.10.5∆Q>Samp. int., ∆H ′
2,>Samp. int., and ∆N>Samp. int. in plant-pollinator, and

seed-dispersal networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
S3.10.6Network references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4 How network size strongly determines trophic specialization: A technical
comment on Luna et al. (2022) 110
4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.3 Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.5 Data and code availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.6 Figure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.7 Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
S4.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

S4.8.1 Supplementary figure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
S4.8.2 Supplementary table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5 Shortcomings of reusing species interaction networks created by different sets of
researchers 117
5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.3.2 Directed graphlet correlation distance (DGCD) . . . . . . . . . . . . . . . . . 121

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.5.1 Caveats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.7 Data and code availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.8 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.9 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
S5.10Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

S5.10.1Directed graphlet correlation distance general information . . . . . . . . . . . 137
S5.10.2Network general information . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
S5.10.3DGCD-13 information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

S5.10.3.1 DGCD-13 as a function of the number of species interaction networks
sourced from each publication (for publications that provide more
than a single network) . . . . . . . . . . . . . . . . . . . . . . . . . . 147

viii



S5.10.3.2 DGCD-13 as a function of the variability in species interaction
network size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

S5.10.4DGCD-6 information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6 Publication-driven consistency in food web structures: Implications for
comparative ecology 158
6.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.3.1 Food webs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.3.2 Pairwise graphlet correlation distance-11 (GCD-11) . . . . . . . . . . . . . . . 162
6.3.3 Assessing structural similarity using mean pairwise GCD-11 . . . . . . . . . . 163
6.3.4 Network size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.7 Data and code availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.8 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
6.9 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
S6.10Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

S6.10.1Errors in food webs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
S6.10.2Graphlet correlation distance-11 example . . . . . . . . . . . . . . . . . . . . 183
S6.10.3Example of mean pairwise GCD-11 as a dispersion metric . . . . . . . . . . . 189
S6.10.4Distribution of all pairwise GCD-11 values . . . . . . . . . . . . . . . . . . . . 191
S6.10.5No substantial evidence of increased structurally similarity between the

“aquatic” food webs of “lake”, “marine”, “river”, and “stream” . . . . . . . . . . 193
S6.10.5.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
S6.10.5.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
S6.10.5.3 Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

S6.10.6Median pairwise GCD-11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
S6.10.7No evidence that the number of nodes or standard deviation in the number of

nodes influences pairwise GCD-11 . . . . . . . . . . . . . . . . . . . . . . . . 199
S6.10.7.1 Mean pairwise GCD-11 between food webs from publications that

produced only a single network . . . . . . . . . . . . . . . . . . . . . 199
S6.10.7.2 Mean pairwise GCD-11 between food webs from publications that

produced multiple networks . . . . . . . . . . . . . . . . . . . . . . . 199
S6.10.7.3 Pairwise GCD-11 between all food webs . . . . . . . . . . . . . . . . 199

S6.10.8No substantial evidence “aquatic” food webs constructed via Ecopath are more
structurally similar than “aquatic” food webs not constructed via Ecopath . . 204
S6.10.8.1 Structural similarity between “aquatic” food webs not constructed

via Ecopath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
S6.10.8.2 Structural similarity between “aquatic” food webs constructed via

Ecopath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
S6.10.9Food web citations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

ix



7 Final remarks 219
7.1 Thesis summary and future directions . . . . . . . . . . . . . . . . . . . . . . . . . . 220

7.1.1 Synthesis of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
7.1.2 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

7.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

x



List of Figures

Page
Figure 2.1 (Top) The nine NEON stream sampling locations across the United States

used in this study; (Bottom) monthly dates of freshwater fish abundance sampling
for each of the nine sites used, where green boxes indicate Spring month dates,
yellow boxes indicate Fall month dates, and the numbers inside the boxes are the
number of days in which that month was sampled. Each day sampled represents
multiple reaches sampled for abundances at that site. . . . . . . . . . . . . . . . . 20

Figure 2.2 Threshold 0.6 of the Fall interaction network (n = 32 species) and the
Spring interaction network (n = 34 species) of a freshwater fish stream community
across nine sampling locations in the United States. Node colour corresponds to
species feeding behavior: (1) light blue: non-feeding adults, (2) red: invertivore,
and piscivore, (3) light green: herbivore, (4) brown: invertivore, (5) dark yellow:
herbivore, and invertivore, and (6) salmon: herbivore, invertivore, and piscivore. . 21

Figure 2.3 Number of maintained interactions and altered interactions for piscivores
(red text) and non-piscivores (black text), including total number of rewiring (blue)
and total number of species turnover interactions (purple), in each season using a
network threshold of 0.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 2.4 Regression between the maximum length of the fish species (in mm) and its
status as a piscivore against the total number of inferred rewiring for each species,
using a network threshold of 0.6. For non-piscivores, the maximum length of the
species appears to have a negligible effect on the total number of rewiring, however
for piscivores, there appears to be a strong positive relationship indicating that the
greater the maximum length of the species, the greater the total number of rewiring
for that species (non-piscivore: n = 20, with n = 5, n = 13, and n = 2 for max
length levels, respectively, and piscivore: n = 8, with n = 1, n = 2, and n = 5 for
max length levels, respectively). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 3.1 Left: Illustration of specialization, modularity, and nestedness in connected
weighted plant-pollinator systems, where white boxes indicate a lack of pairwise
species interaction, and yellow numbered boxes indicate a weighted interaction
between plant (columns) and pollinator (rows) species. Right: First, as shown in
(d) we test the relationships between temperature and precipitation seasonality
with the weighted network metrics of specialization (a), modularity (b), and (c)
nestedness in plant-pollinator, seed-dispersal, and host-parasite networks. Second,
as illustrated in (e) we test the relationship between seasonality and unweighted
network metrics using a redundancy analysis (RDA). Specifically, we attempt to
explain normalized measures of nestedness (1−λcm

1 /λ1, 1−λer
1 /λ1) and modularity

(1 − λmp
2 /λ2) using precipitation and temperature seasonality, while controlling

for whether networks were antagonistic (plant-herbivore, and host-parasite) or
mutualistic (plant-pollinator, seed-dispersal, and plant-ant). . . . . . . . . . . . . . 39

xi



Figure 3.2 The location of the empirical bipartite networks (n = 723) used in this study,
and their corresponding temperature seasonality (◦C) from Fick and Hijmans (2017)
where blue symbols indicate mutualistic networks (plant-pollinator, seed-dispersal,
and plant-ant) and orange symbols indicate antagonistic networks (plant-herbivore,
and host-parasite). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 3.3 Added variable plot for the chosen linear model explaining the variation in
weighted modularity (∆Q) using the explanatory variables sampling intensity+

temperature seasonality ·precipitation seasonality (R2
adj = 0.178) for host-

parasite (n = 67) networks. A single outlier was removed from the analyses
presented here, but see S3.10 Appendix: Figure S3.19 for the linear model with
all (n = 68) networks. Each panel represents the relationship between ∆Q and each
explanatory variable in the model while controlling for all other variables. . . . . . 41

Figure 3.4 Redundancy analysis (RDA) distance triplot explaining metrics of
unweighted nestedness (1− λcm

1 /λ1, 1− λer
1 /λ1) and unweighted modularity

(1− λmp
2 /λ2) using precipitation seasonality (Precip.) and temperature

seasonality (Temp.) while controlling for whether networks are classified as
antagonistic (Type A—plant-pollinator, plant-ant, and seed-dispersal; orange
circles) or mutualistic (Type M—plant-herbivore, and host-parasite; green circles).
Panel (B) is a closer perspective of panel (A). Points are clustered together in the
plots since Temp., Precip., and network type only weakly explain the variation in
the unweighted nestedness and modularity metrics (R2

adj = 0.052). . . . . . . . . . 42
Figure S3.1 Global Moran’s I (observed = 0.096, p-value = 0.125) using the scaled

residuals (between 0 and 1) from the chosen linear mixed model (i.e., the
model with the lowest AIC) explaining the variation in weighted modularity
(∆Q) using the fixed effects of sampling intensity, temperature seasonality,
and precipitation seasonality (Samp.int.+ Temp. · Precip.) and the random
effect of publication for (n = 62) plant-pollinator networks. Location of coloured
rings on map correspond to network locations, where colour corresponds to the
value of the scaled residual for the location’s network(s). . . . . . . . . . . . . . . . 47

Figure S3.2 Global Moran’s I (observed = 0.127, p-value = 0.070) using the scaled
residuals (between 0 and 1) from the chosen linear mixed model (i.e., the
model with the lowest AIC) explaining the variation in weighted specialization
(∆H ′

2) using the fixed effects of sampling intensity, temperature seasonality,
and precipitation seasonality (Samp.int.+ Temp. · Precip.) and the random
effect of publication for (n = 62) plant-pollinator networks. Location of coloured
rings on map correspond to network locations, where colour corresponds to the
value of the scaled residual for the location’s network(s). . . . . . . . . . . . . . . . 48

xii



Figure S3.3 Global Moran’s I (observed = 0.208, p-value = 0.010) using the scaled
residuals (between 0 and 1) from the chosen linear model (i.e., the model with
the lowest AIC) explaining the variation in weighted nestedness (∆N) using
sampling intensity, and temperature seasonality (Samp.int.+ Temp.) for
(n = 62) plant-pollinator networks. Location of coloured rings on map correspond
to network locations, where colour corresponds to the value of the scaled residual
for the location’s network(s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Figure S3.4 Global Moran’s I (observed = −0.034, p-value = 0.573) using the scaled
residuals (between 0 and 1) from the chosen linear mixed model (i.e., the model
with the lowest AIC) explaining the variation in normalized weighted nestedness
(∆Nn) using the fixed effect of temperature seasonality and the random effect
of publication for (n = 62) plant-pollinator networks. Location of coloured rings on
map correspond to network locations, where colour corresponds to the value of the
scaled residual for the location’s network(s). . . . . . . . . . . . . . . . . . . . . . . 50

Figure S3.5 Global Moran’s I (observed = −0.010, p-value = 0.424) using the scaled
residuals (between 0 and 1) from the chosen linear model (i.e., the model with
the lowest AIC) explaining the variation in weighted modularity (∆Q>Samp. int.)

using sampling intensity, temperature seasonality, and precipitation

seasonality (Samp.int.+ Temp. · Precip.) for (n = 25) plant-pollinator networks
whose sampling intensity is greater than the median sampling intensity of all plant-
pollinator. Location of coloured rings on map correspond to network locations,
where colour corresponds to the value of the scaled residual for the location’s
network(s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Figure S3.6 Global Moran’s I (observed = 0.100, p-value = 0.195) using the scaled
residuals (between 0 and 1) from the chosen linear model (i.e., the model
with the lowest AIC) explaining the variation in weighted specialization(
∆H ′

2,>Samp. int.

)
using temperature seasonality, and precipitation

seasonality (Temp.+ Precip.) for (n = 25) plant-pollinator networks whose
sampling intensity is greater than the median sampling intensity of all plant-
pollinator networks. Location of coloured rings on map correspond to network
locations, where colour corresponds to the value of the scaled residual for the
location’s network(s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Figure S3.7 Global Moran’s I (observed = −0.037, p-value = 0.488) using the scaled
residuals (between 0 and 1) from the chosen linear model (i.e., the model with the
lowest AIC) explaining the variation in weighted nestedness (∆N>Samp. int.) using
temperature seasonality for (n = 25) plant-pollinator networks whose sampling
intensity is greater than the median sampling intensity of all plant-pollinator
networks. Location of coloured rings on map correspond to network locations, where
colour corresponds to the value of the scaled residual for the location’s network(s). 53

xiii



Figure S3.8 Global Moran’s I (observed = 0.133, p-value = 0.002) using the scaled
residuals (between 0 and 1) from the chosen linear mixed model (i.e., the
model with the lowest AIC) explaining the variation in weighted modularity
(∆Q) using the fixed effects of sampling intensity, temperature seasonality,
and precipitation seasonality (Samp.int.+ Temp. · Precip.) and the random
effect of publication for (n = 132) seed-dispersal networks. Location of the coloured
rings on map correspond to network locations, where colour corresponds to the
value of the scaled residual for the location’s network(s). . . . . . . . . . . . . . . . 54

Figure S3.9 Global Moran’s I (observed = 0.095, p-value = 0.018) using the scaled
residuals (between 0 and 1) from the chosen linear mixed model (i.e., the model
with the lowest AIC) explaining the variation in weighted specialization (∆H ′

2)

using the fixed effect of sampling intensity and the random effect of publication
for (n = 132) seed-dispersal networks. Location of coloured rings on map correspond
to network locations, where colour corresponds to the value of the scaled residual
for the location’s network(s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Figure S3.10 Global Moran’s I (observed = 0.040, p-value = 0.164) using the scaled
residuals (between 0 and 1) from the chosen linear mixed model (i.e., the
model with the lowest AIC) explaining the variation in weighted nestedness
(∆N) using the fixed effects of sampling intensity, temperature seasonality,
and precipitation seasonality (Samp.int.+ Temp. · Precip.) and the random
effect of publication for (n = 132) seed-dispersal networks. Location of coloured
rings on map correspond to network locations, where colour corresponds to the
value of the scaled residual for the location’s network(s). . . . . . . . . . . . . . . . 56

Figure S3.11 Global Moran’s I (observed = 0.045, p-value = 0.141) using the scaled
residuals (between 0 and 1) from the chosen linear model (i.e., the model with
the lowest AIC) explaining the variation in normalized weighted nestedness (∆Nn)

using sampling intensity, and temperature seasonality (Samp.int.+ Temp.)

for (n = 132) seed-dispersal networks. Location of coloured rings on map correspond
to network locations, where colour corresponds to the value of the scaled residual
for the location’s network(s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure S3.12 Global Moran’s I (observed = −0.009, p-value = 0.465) using the scaled
residuals (between 0 and 1) from the chosen linear model (i.e., the model with the
lowest AIC) explaining the variation in weighted modularity (∆Q>Samp. int.) using
temperature seasonality for (n = 68) seed-dispersal networks whose sampling
intensity is greater than the median sampling intensity of all seed-dispersal
networks. Location of coloured rings on map correspond to network locations, where
colour corresponds to the value of the scaled residual for the location’s network(s). 58

xiv



Figure S3.13 Global Moran’s I (observed = 0.014, p-value = 0.334) using the scaled
residuals (between 0 and 1) from the chosen linear model (i.e., the model with the
lowest AIC) explaining the variation in weighted specialization

(
∆H ′

2,>Samp. int.

)
using sampling intensity, and temperature seasonality (Samp.int.+ Temp.)

for (n = 68) seed-dispersal networks whose sampling intensity is greater than the
median sampling intensity of all seed-dispersal networks. Location of the coloured
rings on map correspond to network locations, where colour corresponds to the
value of the scaled residual for the location’s network(s). . . . . . . . . . . . . . . . 59

Figure S3.14 Global Moran’s I (observed = −0.021, p-value = 0.537) using the scaled
residuals (between 0 and 1) from the chosen linear model (i.e., the model with the
lowest AIC) explaining the variation in weighted nestedness (∆N>Samp. int.) using
temperature seasonality for (n = 68) seed-dispersal networks whose sampling
intensity is greater than the median sampling intensity of all seed-dispersal
networks. Location of the coloured rings on map correspond to network locations,
where colour corresponds to the value of the scaled residual for the location’s
network(s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Figure S3.15 Global Moran’s I (observed = 0.081; p-value = 0.129) using the scaled
residuals (between 0 and 1) from the chosen linear model (i.e., the model
with the lowest AIC) explaining the variation in weighted modularity (∆Q)

using sampling intensity, temperature seasonality, and precipitation

seasonality (Samp.int.+ Temp. · Precip.) for (n = 68) host-parasite networks.
Location of coloured rings on map correspond to network locations, where colour
corresponds to the value of the scaled residual for the location’s network(s). . . . . 61

Figure S3.16 Global Moran’s I (observed = 0.120, p-value = 0.055) using the scaled
residuals (between 0 and 1) from the chosen linear model (i.e., the model with
the lowest AIC) explaining the variation in weighted specialization (∆H ′

2) using
sampling intensity for (n = 68) host-parasite networks. Location of coloured
rings on map correspond to network locations, where colour corresponds to the
value of the scaled residual for the location’s network(s). . . . . . . . . . . . . . . . 62

Figure S3.17 Global Moran’s I (observed = 0.067, p-value = 0.168) using the scaled
residuals (between 0 and 1) from the chosen linear model (i.e., the model with the
lowest AIC) explaining the variation in weighted nestedness (∆N) using sampling

intensity for (n = 68) host-parasite networks. Location of coloured rings on map
correspond to network locations, where colour corresponds to the value of the scaled
residual for the location’s network(s). . . . . . . . . . . . . . . . . . . . . . . . . . 63

Figure S3.18 Global Moran’s I (observed = 0.041, p-value = 0.253) using the scaled
residuals (between 0 and 1) from the chosen linear model (i.e., the model with the
lowest AIC) explaining the variation in normalized weighted nestedness (∆Nn) using
sampling intensity, and precipitation seasonality (Samp.int.+ Precip.)

for (n = 68) host-parasite networks. Location of coloured rings on map correspond
to network locations, where colour corresponds to the value of the scaled residual
for the location’s network(s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

xv



Figure S3.19 Added variable plot for the chosen linear model (without outlier
removed, see Figure 3.3 with outlier removed) explaining the variation in
weighted modularity (∆Q) using the explanatory variables sampling intensity+

temperature seasonality · precipitation seasonality
(
R2

adj = 0.175
)

for
host-parasite (n = 68) networks. Each panel represents the relationship between ∆Q

and each explanatory variable in the model while controlling for all other variables
in the model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 4.1 Pearson correlation (r) between network size (defined by the product of
the number of plant and pollinator species; i.e., rows · columns) and the three
specialization metrics of niche overlap, linkage density, and mean normalized degree
for 87 plant-pollinator networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Figure S4.1 Pearson correlation (r) between sampling intensity and the three
specialization metrics of niche overlap, linkage density, and mean normalized degree
for 87 plant-pollinator networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Figure 5.1 Potential sources of topological heterogeneity that influence researchers’
interpretation of a plant-pollinator community as a bipartite network. Here, the
observed plant-pollinator community (green oval) is translated into a researcher’s
network representation (thought bubble). Sources of topological heterogeneity
between different researchers’ network interpretations of a community could be
introduced from: (i) observing different biological and environmental drivers (purple
text) that influence the community’s interactions, (ii) the different selected sampling
strategies (orange text) that influence which biological and environmental factors are
included during a researcher’s observation, and (iii) the different selected network
construction methods (blue text) researchers use to design a species interaction
network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Figure 5.2 Matrix representations of two bipartite species interaction networks from
www.web-of-life.es; an open species interaction network database. Yellow boxes
in each matrix indicate the presence of an interaction between species at the
corresponding row (plants) and column (animals). (A) Seed-dispersal network
from Poulin et al. (1999), where all plant species (underlined) are from the genus
Psychotria. (B) Subset of the plant-pollinator network from Stald (2003), which
includes a large number of unidentified pollinator species (underlined; 34 of the 54
total pollinator species [not all shown here] in the whole network). . . . . . . . . . 129

Figure 5.3 (A) The six directed graphlets (Gi) consisting of two to three nodes,
and their respective orbits (i.e., the corresponding 13 numerically labelled node
positions). Each unique shade in a single graphlet corresponds to a unique orbit in
that graphlet. Note that for the directed bipartite networks used in this study, only
graphlets G0, G2, and G3 appear. (B) An example calculation of the number of
times node A of a directed bipartite network occupies orbit 6, where dashed lines
indicate the location of G2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

xvi

www.web-of-life.es


Figure 5.4 Multidimensional scaling of the pairwise directed graphlet correlation
distance-13 (DGCD-13) between all bipartite networks (n = 3476). Except for
species interaction networks (triangles), only networks that formed clear groups
in the plot are uniquely identified by color. Each symbol is a single network. . . . 131

Figure S5.1 The six directed graphlets (Gi) consisting of two to three nodes, and their
orbits (i.e., the corresponding 13 numerically labelled node positions). Each unique
shade in a single graphlet corresponds to a unique orbit in that graphlet. . . . . . 138

Figure S5.2 Example calculation of a directed graphlet degree vector for a single node
(node A) using the 6 orbits (i.e., 0, 1, 5, 6, 7, 8 of Figure S5.1) that comprise the
directed graphlet correlation distance 6 method. . . . . . . . . . . . . . . . . . . . 139

Figure S5.3 Example calculation of a directed graphlet correlation matrix (DGCM-6)
using 6 orbits that comprise the directed graphlet correlation distance 6 method.
First, directed graphlet degree vectors for each node in a network are calculated
(a single vector is highlighted in red). Next, Spearman’s correlations are calculated
between all pairs of orbits using the number of times each node occupies each orbit
(an example of the vectors used in a single correlation is highlighted in green). The
resulting correlations form entries within the directed DGCM-6. . . . . . . . . . . 140

Figure S5.4 The formula and an example calculation of the pairwise directed graphlet
correlation distance 6 (DGCD-6) using the directed graphlet correlation matrices
of two bipartite networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Figure S5.5 An example of a 2-dimensional multidimensional scaling (MDS) projection
of all pairwise DGCD-6s between a set of bipartite networks. This MDS projection
is a subset of Figure S5.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Figure S5.6 The relationship between the mean pairwise DGCD-13 of species interaction
networks sourced from the same publication (n = 487) and the number of networks
a publication provided (represented by quartiles). Note that each publication
included in the analyses provided at least two networks. See Table S5.3 for a list of
publications and the number of networks each provided. . . . . . . . . . . . . . . . 148

Figure S5.7 Multidimensional scaling of the pairwise directed graphlet correlation
distance 6 (DGCD-6) between all bipartite networks (n = 3476). Each symbol
in plot is a single network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Figure 6.1 Example of how differences in the three classes of structure (i.e., biological
and environmental factors [purple], sampling strategies [orange], and network
construction methodologies [aqua]) cause food webs sourced from (A) Valiela (1974),
and (B) Parker and Huryn (2006) to be very structurally different. Illustration
reflects only a subset of nodes from each web (WEB200_ and WEB274_,
respectively, from our food webs dataset, see S6.10 Appendix: Table S6.7). . . . . 170

Figure 6.2 The six graphlets (Gi) consisting of two-to-four nodes, and their respective
automorphism orbits (“orbits”, nodes that are numerically labelled and outlined in
red). Each unique shade in a graphlet corresponds to an orbit, which are nodes in
the subgraph that are topologically identical. . . . . . . . . . . . . . . . . . . . . . 171

xvii



Figure 6.3 Multidimensional scaling of the pairwise graphlet correlation distance–11
(GCD-11) between (A) all food webs from publications that only produced a single
network (n = 83) and (B) all food webs from publications that produced multiple
networks (n = 191). Each symbol in the plot is a single food web, where colour
reflects the respective food web’s source publication grouping, and shape reflects
the ecosystem type each food web represents. See S6.10 Appendix: Figure S6.7 for
the distribution of all pairwise GCD-11s projected here. Note: this visual mapping
is only an approximation of the high-dimensional true pairwise GCD-11s between
all food webs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Figure 6.4 Mean pairwise graphlet correlation distance-11 (GCD-11) by decade of
publication between food webs sourced from publications that each produced only
a single network (teal solid line) and, multiple food webs sourced from the same
publication, weighted by the number of networks produced by each publication (blue
dashed line). Circle size corresponds to the number of food webs published in each
decade. Bars represent mean standard deviation of the pairwise GCD-11 between
specified subsets of food webs, which for decades representing publications that
provided multiple networks, is weighted by each publication’s number of networks. 173

Figure S6.1 The six graphlets (Gi) consisting of two-to-four nodes, and their respective
orbits (i.e., the corresponding 11 numerically labelled node positions). Each unique
shade in a single graphlet corresponds to a unique orbit in that graphlet. . . . . . 184

Figure S6.2 Example calculation of the counts for orbit 2 in a graphlet degree vector-11
for node A of Network 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Figure S6.3 Example calculation of a graphlet correlation matrix-11 (GCM-11) for
Network 1 using the 11 orbits that comprise the graphlet correlation distance-11
method. First, graphlet degree vector-11s for each node in the network are calculated
(a single vector is highlighted in red). Next, Spearman’s correlations are calculated
between all pairs of orbits using the number of times each node occupies each orbit
(an example of the vectors used in a single correlation is highlighted in green). The
resulting correlations form entries within the GCM-11. . . . . . . . . . . . . . . . . 186

Figure S6.4 The formula and an example calculation of the pairwise graphlet correlation
distance-11 (pairwise GCD-11) using the two graphlet correlation matrix-11s of
Network 1 and Network 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Figure S6.5 Multidimensional scaling (MDS) projection of all pairwise GCD-11s between
the 274 food webs, as also shown in Figure 6.3. . . . . . . . . . . . . . . . . . . . . 188

Figure S6.6 Example multidimensional scaling (MDS) [plot on left] of all pairwise
graphlet correlation distance-11s (GCD-11) [matrix on right] between food webs
(n = 7) mapped in 2-dimensional space. Lines are drawn on the MDS to convey
the pairwise distances between symbols/webs (but distances are obtained from the
matrix). Each symbol in the plot is a single food web, where colour and shape reflects
the respective food web’s grouping. Distances between webs of opposite groupings
are not drawn on plot for the sake of simplicity. . . . . . . . . . . . . . . . . . . . . 190

xviii



Figure S6.7 The distribution of all pairwise graphlet correlation distance-11s (GCD-
11s) between 247 food webs. n in legend corresponds to the number of pairwise
GCD-11s for each category, where all total pairwise distances is n = 37401[
i.e., number of networks·(number of networks−1)

2 = 274·273
2

]
. . . . . . . . . . . . . . . . . . 192

Figure S6.8 Median pairwise graphlet correlation distance-11 (GCD-11) by decade
published between food webs sourced from publications that each produced only
a single network (teal solid line) and, multiple food webs sourced from the same
publication, weighted by the number of networks produced by each publication
(blue dashed line). Circle size corresponds to the number of food webs published in
the decade. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

Figure S6.9 (A) Mean pairwise graphlet correlation distance-11 (GCD-11) as a function
of the mean number of nodes between food webs sourced from the same publication
(n = 22). (B) Mean pairwise GCD-11 as a function of the standard deviation in the
number of nodes between food webs sourced from the same publication (n = 22).
See Table S6.6 for exact values for the mean pairwise GCD-11, the mean number
of nodes, and the standard deviation in the number of nodes between food webs
sourced from the same publication. . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Figure S6.10 (A) All possible n = 37401 pairwise graphlet correlation distance-11s (GCD-
11s) between the 274 food webs as a function of the absolute difference in network
size (i.e., number of nodes), where each point is a pairwise GCD-11 measure between
two webs. (B) All possible n = 37401 pairwise graphlet correlation distance-11s
(GCD-11s) between the 274 food webs as a function of the standard deviation in
network size (i.e., number of nodes), where each point is a pairwise GCD-11 measure
between two webs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

xix



List of Tables

Page
Table 2.1 Fish feeding behaviours and total abundances for Fall and Spring in

years 2017—2019. Feeding behaviours correspond to (i) Non-Feed: non-feeding
adults correspond to non-parasitic lamprey species, (ii) Herb: herbivore, (iii)
Invert: invertivore, and (iv) Pisc: piscovore. . . . . . . . . . . . . . . . . . . . . . . . 24

Table 2.2 Model fit (BIC scores, pseudo-R2), and prediction error (RMSE, RMSE obs>0)
for each Poisson lognormal (PLNmodels) and Poisson regression model (glmnet) using
n = 32 species for Fall data, and n = 34 for Spring data. Models were constructed
using 74 (Fall) and 94 (Spring) observations where a single observation is a single
sampling abundance measure for multiple species made at a specific point in a stream
at one of the nine NEON sampling locations at a specific day. “RMSE” (root mean
square error) indicates the predictive ability of each model and predicts for n = 32

(Fall) and n = 34 (Spring) species based on the most recent observations for each
of the nine NEON sites [n = 288 (Fall) and n = 306 (Spring)]. “RMSE obs>0”
indicates the predictive ability (root mean squared error) of each model for presence-
only abundances (i.e., observations> 0) [n = 38 (Fall) and n = 36 (Spring)]. . . . . . 25

Table 3.1 A list of some publications that test for, or variations of, latitudinal gradients
in empirical ecological networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Table 3.2 Linear mixed models (LMMs) for explaining the variation in weighted
modularity (∆Q), weighted specialization (∆H ′

2), and weighted nestedness (∆N).
Marginal R2 is the proportion of variation explained by the fixed effects, and
conditional R2 is the proportion of variation explained by both the fixed and
random effects. Publication, a factor variable that grouped networks from the
same publication, was included as a random intercept in all models. Precipitation
seasonality (Precip.), temperature seasonality (Temp.), and log-transformed sampling
intensity (Samp.int.) were included as fixed effects. If the marginal R2 < 0.15, we did
not investigate which combinations of fixed effects were chosen. See S3.10 Appendix:
Table S3.1 for the associated models that were tested when evaluating which fixed
effects were to be chosen. When marginal and conditional R2 are equal (indicating that
the random effect did not contribute to explaining the variation), model explorations
were performed with linear models (Table 3.3). . . . . . . . . . . . . . . . . . . . . . 44

xx



Table 3.3 Linear models (LMs) for explaining the variation in weighted modularity (∆Q),
weighted specialization (∆H ′

2), and weighted nestedness (∆N). Temp. is temperature
seasonality, Precip. is precipitation seasonality, Samp.int. is the log-transformed
sampling intensity for each network, coeff. is the coefficient’s value, R2

adj is the adjusted
R2 of the model, and ∆AIC is the difference between the AIC of a given model and
the model with lowest AIC value. When Samp.int.alone is not the chosen model, we
also provide the model with lowest AIC value. See S3.10 Appendix: Table S3.2 for all
possible model configurations using the independent variables for explaining weighted
metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Table S3.1 Extension from Table 3.2 of linear mixed models (LMMs) for explaining the
variation in weighted specialization (∆H ′

2). Marginal R2 is the proportion of variation
explained by the fixed effects, conditional R2 is the proportion of variation explained
by both the fixed and random effects, and ∆AIC is the difference between the AIC
of a given model and the model with lowest AIC value. Publication, a factor variable
that grouped networks from the same publication, was included as a random intercept
in all models. Precipitation seasonality (Precip.), temperature seasonality

(Temp.), and log-transformed sampling intensity (Samp.int.) were included as
fixed effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Table S3.2 Extension from Table 3.3 of linear regression models (LMs) for explaining the
variation in weighted modularity (∆Q), weighted specialization (∆H ′

2), and weighted
nestedness (∆N). Temp. is the temperature variability, Precip. is the precipitation
variability, Samp.int. is the log-transformed sampling intensity for each network,
coeff. is the coefficient’s value, R2

adj is the adjusted R2 of the model, and ∆AIC is the
difference between the AIC of a given model and the model with lowest AIC value. . 66

Table S3.3 Linear mixed models (LMMs) for explaining the variation in normalized
weighted nestedness (∆Nn). Marginal R2 is the proportion of variation explained by
the fixed effects, conditional R2 is the proportion of variation explained by both the
fixed and random effects, and ∆AIC is the difference between the AIC of a given
model and the model with lowest AIC value. Publication, a factor variable that
grouped networks from the same publication, was included as a random intercept
in all models. Precipitation seasonality (Precip.), temperature seasonality

(Temp.), and log-transformed sampling intensity (Samp.int.) were included as
fixed effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Table S3.4 Linear regression models (LMs) for explaining the variation in normalized
weighted nestedness (∆Nn). Temp. is the temperature seasonality, Precip.

is the precipitation seasonality, Samp.int. is the log-transformed sampling

intensity for each network, coeff. is the coefficient’s value, R2
adj is the adjusted R2

of the model, and ∆AIC is the difference between the AIC of a given model and the
model with lowest AIC value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

xxi



Table S3.5 Linear regression models (LMs) for explaining the variation in weighted
modularity (∆Q), weighted specialization (∆H ′

2), and weighted nestedness (∆N). ∆N

for plant-pollinator networks is provided here but it is the same as in Table S3.2. Temp.
is the temperature variability, Precip. is the precipitation variability, Samp.int. is
the log-transformed sampling intensity for each network, coeff. is the coefficient’s value,
R2

adj is the adjusted R2 of the model, and ∆AIC is the difference between the AIC of
a given model and the model with lowest AIC value. . . . . . . . . . . . . . . . . . . 74

Table S3.6 Linear regression models (LMs) for explaining the variation in weighted
modularity (∆Q>Samp. int.), weighted specialization

(
∆H ′

2,>Samp. int.

)
, and weighted

nestedness (∆N>Samp. int.) for networks whose sampling intensity is greater than
the median sampling intensity of their respective system. Temp. is the temperature
variability, Precip. is the precipitation variability, Samp.int. is the log-transformed
sampling intensity for each network, coeff. is the coefficient’s value, R2

adj is the adjusted
R2 of the model, and ∆AIC is the difference between the AIC of a given model and
the model with lowest AIC value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Table S3.7 Networks (and their citations) used in No strong evidence that modularity,
specialization or nestedness are linked to seasonal climatic variability in bipartite
networks. Host-parasite networks are “HP”, plant-herbivore networks are “PH”, ant-
plant networks are “AP”, plant-pollinator networks are “PP”, and seed-dispersal
networks are “SD”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Table 4.1 Linear mixed models (LMMs) for the three specialization metrics of niche
overlap, mean normalized degree, and linkage density with log transformed network
size (defined by the product of the number of plant and pollinator species), and the
environmental variables from Luna et al. (2022) as explanatory variables. Luna et al.
(2022) best model represents the LMMs that Luna et al. (2022) used for showing
how the environment explains each specialization metric. The amount of variation
explained by the fixed effects is represented by R2

marg, and the amount explained by
both the fixed and random effects is represented by R2

cond. The random effect used in
all models is network location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Table S4.1 Linear mixed models (LMMs) for the three specialization metrics of niche
overlap, mean normalized degree, and linkage density with log transformed sampling
intensity, and the environmental variables from Luna et al. (2022) as explanatory
variables. Luna et al. (2022) best model represents the LMMs that Luna et al.
(2022) used for showing how the environment explains each specialization metric. The
amount of variation explained by the fixed effects is represented by R2

marg, and the
amount explained by both the fixed and random effects is represented by R2

cond. The
random effect used in all models is network location. . . . . . . . . . . . . . . . . . . 116

Table 5.1 Classes of topological heterogeneity that influence species interaction networks,
some sources of this topological heterogeneity, a description of the source, and some
example references. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Table 5.2 Description of bipartite networks used in this study. All bipartite networks were
connected and had at least 5 nodes in either disjoint sets of nodes. . . . . . . . . . . 134

xxii



Table 5.3 Mean pairwise directed graphlet correlation distance-13 (DGCD-13) between
bipartite networks from the same domain or subgrouping. Subgrouping refers to
a subgroup [i.e., networks classified as the same type of network from the same
domain during network construction (e.g., the Chicago networks in the crime network
domain)] that formed an obvious cluster within the MDS plot (Figure 5.4). See
Table 5.2 for a list of network domains and their corresponding subgroups. All species
interaction networks were classified into their appropriate subgroup even though they
did not form subgroupings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Table 5.4 Mean pairwise directed graphlet correlation distance-13 (DGCD-13) of bipartite
species interaction networks from the same publication grouping. Multiple bipartite
networks sourced from the same publication (i.e., networks created by the same set
of researchers) are termed “multiple networks per publication” and bipartite networks
sourced from publications that each produced only a single network are termed “one
network per publication”. See S5.10 Appendix: Table S5.3 for a list of publications
that provided more than one network and each publication’s mean pairwise DGCD-13.136

Table S5.1 Additional bipartite network information. Subgrouping refers to a subgroup
[i.e., networks classified as the same type of network from the same domain during
network construction (e.g., the Chicago networks in the crime network domain)] that
formed an obvious cluster within the MDS plot (Figure 5.4). See Table 5.2 for a
list of network domains and their corresponding subgroups. All species interaction
networks were classified into their appropriate subgroup even though they did not
form subgroupings (e.g., Ant-plant). . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Table S5.2 Median pairwise directed graphlet correlation distance 13 (DGCD-13) between
bipartite networks from the same domain or subgrouping. Subgrouping refers to
a subgroup [i.e., networks classified as the same type of network from the same
domain during network construction (e.g., the Chicago networks in the crime network
domain)] that formed an obvious cluster within the MDS plot (Figure 5.4). See
Table 5.2 for a list of network domains and their corresponding subgroups. All species
interaction networks were classified into their appropriate subgroup even though they
did not form subgroupings (e.g., Ant-plant). . . . . . . . . . . . . . . . . . . . . . . . 144

Table S5.3 Mean pairwise directed graphlet correlation distance 13 (DGCD-13) between
bipartite species interaction networks from the same publication grouping. Bipartite
networks sourced from publications that produced only a single network are termed
“one network per publication”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Table S5.4 Pairwise directed graphlet correlation distance 13 (DGCD-13) between species
interaction networks using the smallest and largest networks classified into quartiles
(whereby size was determined by number of nodes). . . . . . . . . . . . . . . . . . . 150

xxiii



Table S5.5 Mean pairwise directed graphlet correlation distance 6 (DGCD-6) between
bipartite networks from the same domain or subgrouping. Subgrouping refers to
a subgroup [i.e., networks classified as the same type of network from the same
domain during network construction (e.g., the Chicago networks in the crime network
domain)] that formed an obvious cluster within the MDS plot (Figure S5.7). See
Table 5.2 for a list of network domains and their corresponding subgroups. All species
interaction networks were classified into their appropriate subgroup even though they
did not form subgroupings (e.g., Ant-plant). . . . . . . . . . . . . . . . . . . . . . . . 153

Table S5.6 Median pairwise directed graphlet correlation distance 6 (DGCD-6) between
bipartite networks from the same domain or subgrouping. Subgrouping refers to
a subgroup [i.e., networks classified as the same type of network from the same
domain during network construction (e.g., the Chicago networks in the crime network
domain)] that formed an obvious cluster within the MDS plot (Figure S5.7). See
Table 5.2 for a list of network domains and their corresponding subgroups. All species
interaction networks were classified into their appropriate subgroup even though they
did not form subgroupings (e.g., Ant-plant). . . . . . . . . . . . . . . . . . . . . . . . 154

Table S5.7 Mean pairwise directed graphlet correlation distance 6 (DGCD-6) of bipartite
species interaction networks from the same publication grouping. Bipartite networks
sourced from the same publication are termed “multiple networks per publication” and
bipartite networks sourced from publications that each produced only a single network
are termed “one network per publication”. See Table S5.8 for a list of publication that
provided more than one network and each publication’s mean pairwise DGCD-6. . . 155

Table S5.8 Mean pairwise directed graphlet correlation distance 6 (DGCD-6) between
bipartite species interaction networks from the same publication grouping. Bipartite
networks sourced from publications that produced only a single network are termed
“one network per publication”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Table 6.1 Mean pairwise graphlet correlation distance-11 (GCD-11) between food webs
sampled from the same type of ecosystem or different type of ecosystem. Number of
webs from each ecosystem are identified in parentheses. “Aquatic” food webs include
those from marine, lakes, rivers, streams, and springs, “aquatic and terrestrial” food
webs include those from salt marshes, ponds, bogs, mudflats, pitcher plants, and tree
holes filled with water, and “terrestrial” food webs include those from sand dunes,
forests, meadows, prairie, and farmlands. . . . . . . . . . . . . . . . . . . . . . . . . . 174

Table 6.2 Mean pairwise graphlet correlation distance-11 (GCD-11) between food webs
sourced from the same publication grouping. Multiple food webs sourced from the
same publication are termed “multiple food webs per publication” and food webs
sourced from publications that each produced only a single network are termed “one
food web per publication”. See S6.10 Appendix: Table S6.6 for a list of publications
that provided more than one web and each publication’s mean pairwise GCD-11. . . 175

xxiv



Table S6.1 Changes to food web adjacency matrices. Although not listed here, it is
important to ensure no extra white space characters are included either in front or
behind column/row string names, otherwise R (R Core Team, 2023) will interpret
these names as different nodes if there are also rows/columns with the same string
name but without additional white space characters. . . . . . . . . . . . . . . . . . . 177

Table S6.2 Mean pairwise graphlet correlation distance-11 (GCD-11) between food webs
sampled from the same type or different “aquatic” ecosystem. Number of webs from
each “aquatic” ecosystem are identified in parentheses. . . . . . . . . . . . . . . . . . 195

Table S6.3 Median pairwise graphlet correlation distance-11 (GCD-11) between food webs
sampled from the same type of ecosystem or different type of ecosystem. Number of
webs from each ecosystem are identified in parentheses. “Aquatic” food webs include
those from marine, lakes, rivers, streams, and springs, “aquatic and terrestrial” food
webs include those from salt marshes, ponds, bogs, mudflats, pitcher plants, and tree
holes filled with water, and “terrestrial” food webs include those from sand dunes,
forests, meadows, prairie, and farmlands. . . . . . . . . . . . . . . . . . . . . . . . . . 196

Table S6.4 Median pairwise graphlet correlation distance-11 (GCD-11) between food webs
sourced from the same publication grouping. Multiple food webs sourced from the
same publication are termed “multiple food webs per publication” and food webs
sourced from publications that each produced only a single network are termed “one
food web per publication”. See Table S6.6 for a list of publications that provided more
than one food web and each publication’s mean pairwise GCD-11. . . . . . . . . . . 197

Table S6.5 Mean pairwise graphlet correlation distance-11 (GCD-11) between food webs
sourced from publications that each produced only a single network (i.e., one food
per publication) when partitioned into quartiles based the number of nodes. . . . . . 200

Table S6.6 Mean pairwise graphlet correlation distance-11 (GCD-11) between food webs
from the same publication grouping. Each food web sourced from a publication
that produced only a single network belong to the grouping “one food web per
publication”, while multiple food webs sourced from the same publication belong to
that publication’s grouping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

Table S6.7 The list of 148 food webs used in this study. Webs are classified as belonging
to type aquatic (“A”), aquatic and terrestrial (“A&T”), or terrestrial (“T”). . . . . . . 206

xxv



Chapter 1

Introduction

For almost all practical purposes, it is assumed that matter currently on earth will remain on the
planet, reflecting the property of a closed system (Jacobson et al., 2000). According to the law
of conservation of mass then, this matter is neither created nor destroyed (Bodner et al., 2021a).
Consequently, the elements that make up life as we know it—mainly carbon, nitrogen, oxygen,
hydrogen, calcium, and phosphorus—are perpetually reused and interconnected through all biological
processes when formed into new molecules (Sterner et al., 2011).

This recycling of materials, and the ability to track it, is an important part of science. In
chemistry, the mass of reactant elements in a reaction must equal the mass of the products (Silberberg
et al., 2006). In physics, differential equations quantitatively describe relationships between functions
and their derivatives (Boyce et al., 2021). In biology, carbon in the bodies of heterotrophs must have
originated from autotrophs (Bolin, 1970).

The ability to track organic matter was likely an attractive feature for early ecologists who
represented species and their feeding interactions as food webs. While the genesis of food webs
is unknown, early concepts can be traced to Al-Jāh. iz. in the eighth century who conceived food
chains (Egerton, 2002; Delmas et al., 2019). The more recognizable and contemporary food webs
produced by Summerhayes and Elton (1923) in the 1920s, can perhaps also be regarded as a
beginning (Dunne, 2006). In their study, Victor Summerhayes and Charles Elton represented
terrestrial and aquatic organisms—of various levels of taxonomic classification—as unique and
discrete entities (specifically boxes), with their corresponding pairwise trophic feeding interactions
as edges connecting organisms.

Since its inception, the interest, application, and study of networks in ecology has grown,
especially in recent decades (Proulx et al., 2005; Ings et al., 2009; Delmas et al., 2019; Fortin et al.,
2021). This rapid adoption can perhaps be attributed to their utility in representing complex systems
as tractable networks, which can be further analyzed using mathematical techniques (Poisot et al.,
2016b). For instance, beyond a consumption road map, analyzing who eats whom has important
consequences for entire communities; direct and indirect interactions provide pathways that can
facilitate trophic cascades (García-Callejas et al., 2019).

With network science’s rich and extensive history, we as ecologists are equipped with a wealth
of knowledge about networks that we can apply to our own studies (Michalska-Smith and Allesina,
2019). My thesis is devoted to building and analyzing species interaction networks, and so most of the
discussion is focused here. Given the immense literature encompassing ecological networks (Poisot
et al., 2015), this chapter serves only as a cursory introduction. In the following sections, I
briefly introduce species interaction networks, how they are constructed, as well as some simple
measurements that inform about their corresponding ecological communities. These ideas and
concepts will be further explored in subsequent chapters, offering richer insights into their broader
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implications.

1.1 General network history

Network science is a powerful discipline, originally rooted in the quantitative field of pure
mathematics as graph theory. Celebrated as its first proof (Newman, 2003), the “Seven Bridges
of Königsberg” problem resolved by revered mathematician Leonhard Euler in 1736, rigorously
formalized the impossibility of navigating the City and returning to the place of departure, by
only crossing each of the seven bridges once (Euler, 1741). The abstraction of Königsberg (now
Kaliningrad, Russia) and its bridges as a mathematical object consisting of nodes (i.e., identifiable
locations of the City separated by a river) and edges (i.e., bridges need to cross the river) is an
illustration of the power of topology (Newman et al., 2006). Specifically, concerning the properties
of a shape—in this case a network—that remain unchanged when that shape is deformed (Totaro,
2008), e.g., the Cartesian locations of bridges are disregarded when modelled as a network but still
help to answer the aforementioned problem.

While the study of networks largely remained within the confines of graph theory for the
next 200+ years, certain discoveries significantly punctuated through to contemporary network
science (Lewis, 2011). In 1959, Edgar Gilbert (Gilbert, 1959) and Paul Erdős and Alfréd Rényi (Erdős
and Rényi, 1959) independently introduced generative random graphs, which are now often adopted
as network null models. In 1967, Stanley Milgram (Milgram, 1967) provided evidence for the “six
degrees of separation”, suggesting that anyone is socially connected to another by five intermediate
acquaintances. More recently in the late 1990s and early 2000s, seminal work by Duncan Watts,
Steven Strogatz, Albert-László Barabási, Reka Albert, Michelle Girvan, and Mark Newman applied
network tools to understand real-world physical systems (e.g., the internet), which helped to usher
in the study of complex networks (Molontay and Nagy, 2020). Complex networks exhibit properties
and behaviors that do not appear in simple networks such as random graphs (Mitchell, 2006).

Today, network science is known as the science of systems (Lewis, 2011). This umbrella term
includes parts of chemistry, physics, biology, and social science (Cottrell and Pettiford, 2000),
but these same subjects in turn also inform network science; by innovating and developing novel
approaches to analyze their own types of networks (Molontay and Nagy, 2020). Hence, the network
tools available are vast, and sophisticated in their ability to uncover cryptic properties in the topology
of networks. Added with the ability to analyze networks consisting of millions of nodes and edges,
especially in our current data age (Newman et al., 2006), where “data is the new oil” as termed by
mathematician Clive Humby, network science will undoubtedly continue to flourish.

1.2 Ecology and networks

The definition of species interaction networks are partly proceeded by their name, in that
nodes represent species and edges connecting nodes represent their corresponding pairwise species
interactions (Filotas et al., 2023). Specifically, in precise mathematical language (Lewis, 2011), a
species interaction network G can be defined in set notation as

G = {N,L, f} , (1.1)
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where N is the set of all nodes representing species identities, L is the set of all edges representing
species interactions, and f : N×N is a mapping function which informs about the nodes/species that
interact with each other pairwise (i.e., one link connects two nodes). Species interaction networks
are also commonly used and referred to as a model for the corresponding ecological community from
which they were sampled, e.g., Dunne (2006); Delmas et al. (2019).

Undoubtedly, species interactions are important for species themselves (Thompson, 1999). In fact,
the whole discipline of community ecology is devoted to the “study of the interactions that determine
the distributions and abundances of organisms” (Krebs, 2009). Because species not only rely on
interactions for sustenance, but also exist within interconnected webs, their evolution is directly
shaped by these relationships (Cohen et al., 1993). Interactions are also integral to community
stability (Landi et al., 2018), resilience (McCann, 2011), and often serve as a more nuanced indicator
of richness than simple lists of species abundance counts (Valiente-Banuet et al., 2015). For these
reasons, among others, studying species and their interactions within a network framework has
helped to illuminate many different subdisciplines within ecology.

1.2.1 About ecological networks

One way to delve into the nitty-gritty of species interaction networks is by first classifying networks
into mutually exclusive categories according to the rules by which their nodes can form edges with
other nodes. Starting with the base case, unipartite networks allow any node to form an edge with any
other node in a given network (Delmas et al., 2019). Food webs are the most recognizable unipartite
networks in ecology and have historically been the most commonly studied type of species interaction
network (Dormann et al., 2017). For instance, Polis (1991) described the trophic interactions between
different vertebrates, invertebrates, and vascular plants of California’s Coachella Valley desert. Under
more constrained rules, bipartite networks separate nodes into two disjoint sets, where edges only
occur between nodes of opposite sets (Williams, 2011). Like the plant-pollinator networks described
by CaraDonna et al. (2017), there is clear differentiation between sets of nodes which represent animal
pollinator species and plant species, and interactions only occur between a single plant node and a
single pollinator node. Inductively, multipartite networks are a generalization of bipartite networks,
whereby nodes belong to n disjoint sets (i.e., multi -sets), and edges between nodes can only occur
between nodes of different sets. For example, Pocock et al. (2012) constructed a species interaction
network consisting of 11 distinct sets of animals (e.g., seed-feeding insects, rodent ectoparasites)
found in Somerset, United Kingdom. Keen awareness of the different types of networks is essential
as their topology is dictated by the rules which interactions are allowed to occur between species.

Beyond just their nodes, species interaction networks can be further classified by their links.
Binary networks consist of edges where an interaction is simply defined to exist between two nodes
in a network. For example, Schneider (1997) built binary food webs for seven temporary pond
communities in northern Wisconsin. In contrast, weighted networks are those that have edges with
associated non-zero numerical values that reflect some element of realism. For instance, in the
predator-prey bipartite networks of Gelmi-Candusso et al. (2023), the weight of links correspond
to the number of times a predator species was observed eating a prey species. Edges can also be
directed. In this way, an edge may indicate the flow of matter or energy. For example, Valiela (1974)
described the food web of an arthropod community found in manure, where arrows point away from
lower trophic organisms and towards higher trophic organisms. While obvious, it should be explicitly
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stated that interactions also represent different types of species interactions. For instance, the edges
of plant-pollinator networks are mutualistic and reflect an animal species pollinating a plant species,
whereas the edges of food webs are antagonistic and reflect a consumer species eating a resource
species.

Certainly, networks in ecology encompass more than just species interaction networks.
Landscape ecology originally adopted networks to “generalize the consequences of habitat loss for
patch connectivity and its implications for metapopulations” (Bascompte, 2007). In conjunction
with differential equations describing species population changes, the patches of resources in
metacommunity theory can also be modelled using networks (Thompson et al., 2017). Since ecological
processes occur in a closed system, many other well-known topics in ecology can also be modelled as a
network. Accordingly, Lotka-Volterra equations can be modelled as a network (Haerter et al., 2016),
where interactions represent the rates of change of species population sizes. Similarly, susceptible-
infected-recovered dynamics can be modelled by taking a network approach (Newman, 2002).

1.2.2 Constructing species interaction networks

Perhaps unsurprisingly, the biggest hurdle ecologists must overcome when evaluating network
topology is the task of starting out, namely, gathering in situ data to be able to build species
interaction networks (Strydom et al., 2021a). Generally most empirical networks at some point
require field data (Jordano, 2016), where researchers must observe interactions between individuals
of different species for those interactions to be represented in the network (Faisal et al., 2010). For
example, when constructing food webs, ecologists often rely on evidence of predator-prey interactions
through gut content analyses, via the presence of biological material of one species present in the
stomach of another species (McLeod et al., 2020). However, it is often logistically and financially
prohibitive for researchers to obtain interaction evidence to build their own food webs (Hegland
et al., 2010; de Aguiar et al., 2019; Xing and Fayle, 2021).

The observational evidence requirement likely forces many researchers that do build networks to
focus on studying ecological communities of more localized and small organisms. This may explain
the recent increased interest in bipartite communities, such as those represented by plant-pollinator
networks (Poisot et al., 2021; Xing and Fayle, 2021). In such cases, to obtain interaction evidence,
a researcher may simply record all animal pollinators seen contacting the reproductive structures of
sessile flower species during some observational period, e.g., CaraDonna et al. (2017).

Inferring community structure may also be an alternative and effective approach to help
alleviate some sampling challenges (Morales-Castilla et al., 2015). Unlike traditional methods that
rely on direct observation, inferential techniques circumvent the need for physical evidence of
species interactions by instead employing proxies. For example, inference of interactions has been
accomplished with varying levels of success, including via traits (Gravel et al., 2013), species co-
occurrence (Harris, 2016), and phylogenetics (Strydom et al., 2022).

1.2.3 Topological measures of species interaction networks

For ecologists, constructing a species interaction network is likely a means to further analyze
its corresponding topological properties which may reveal profound biological insights (Blüthgen
et al., 2007). For example, node centrality can be used to identify keystone species in food
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webs (Martín González et al., 2010). But before applying any metrics, it is essential to be aware
of the type of network being analyzed. Different network types often necessitate distinct analytical
approaches due to the rules governing the ways in which interactions are allowed to occur between
nodes. For example, weighted metrics are designed to analyze the topology of networks with weighted
interactions, and so should only be used with weighted networks. It should be stated that although
not usually specified throughout this chapter, most of the metrics mentioned here have variants that
have been developed to analyze weighted, unweighted, or directed networks.

One of the earliest discussions involving network metrics centered around connectance, spurred by
the enduring complexity-stability debate (Dunne, 2006). Specifically, the hypothesis that a greater
number of species interactions increases community stability (MacArthur, 1955). This notion was
challenged by Robert May in his landmark works which outlined that stability occurs in random
networks only when the number of species (S), connectance (C), and interaction strength (i) obey the
inequality: i

√
SC < 1 (May, 1972, 1973). In essence, connectance measures the proportion of realized

links to all possible links in a species interaction network (Blüthgen et al., 2006). For instance, in a
food web with cannibalism, connectance is the ratio between the number of links L and the squared
number of nodes S (or species) in the network, expressed as L/S2. This metric also emphasizes
the perspective of the graph as a binary symmetric matrix, where S is the number of rows and
columns, and L is the number of 1s. Naturally, weighted matrices replace the binary entries with some
other non-binary real number. While interactions in communities certainly do not occur at random,
May’s work provided a quantitative method to test the influence of complexity using empirical data
[i.e., plugging in for the variables in the above equation] (Dunne, 2006). However, recent discourse
about empirical networks generally views connectance as a sampling artifact, whereby connectance
increases as sampling effort increases (Michalska-Smith and Allesina, 2019).

Today, more in-vogue metrics generally evaluate bipartite network topology, with three of the
most popular being modularity, nestedness, and specialization. Modularity measures for clustering
within a species interaction network, whereby clusters occur when a subset of species interact more
strongly with each other than with other species (Olesen et al., 2007). For instance, Schleuning
et al. (2014) demonstrated that modularity was related to seasonal climatic variability in seed-
dispersal networks. Nestedness measures the degree to which specialist species interact with proper
subsets of species interacting with generalists species (Bascompte et al., 2003). Guimarães Jr. et al.
(2006) evaluated ant-plant networks in Mexico, and found generally high nestedness in species rich
communities. Specialization measures the proportion of niche overlap—as measured by interaction
partners—between species in the community (Blüthgen et al., 2007; Poisot et al., 2012b). Dalsgaard
et al. (2011) found that the specialization of plant-hummingbird networks was associated with species
richness and climatic variables.

Recognizing the significant loss of information incurred when summarizing network structure
to a single metric, ecologists have begun to look for “distributions of forms within network
structure” (Stouffer et al., 2007). Among these, motifs have gained considerable interest. Motifs are
configurations of subsets of nodes and edges within a network that form connected circuits, and their
over expressed frequency within an analyzed network is considered as displaying importance (Milo
et al., 2002; Alon, 2007). In ecology, applications of motifs have included investigating the role of
bee species in plant-pollinator networks (Simmons et al., 2019a), the role of ontogenetic structure
in food webs (Clegg et al., 2018), and prey selection in food webs (Stouffer et al., 2007).
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1.2.4 Open species interaction networks

Due to the substantial investment required to create any species interaction network (Polis, 1991;
McLeod et al., 2021), many researchers opt to forgo in situ sampling, and instead adopt empirical
networks already built as data for testing their own hypotheses (Winemiller, 1990; Goldwasser
and Roughgarden, 1993). These freely available (i.e., open) species interaction networks are often
made available on online repositories, after the articles which explored their topology have been
published. Open food webs have been reused to investigate how the topology of communities are
influenced by the amount of sampled area that was used to delineate the community (Galiana et al.,
2018), and how communities are influenced by their proximity to anthropogenic sources (Mestre
et al., 2022b). Open bipartite networks are also commonly reused, in particular, to evaluate how
the structure of plant-pollinator, seed-dispersal, and host-parasite systems are influenced by latitude
and climactic variability (Olesen and Jordano, 2002; Ollerton and Cranmer, 2002; Dalsgaard et al.,
2011; Schleuning et al., 2012; Morris et al., 2014; Dalsgaard et al., 2017).

Of course, there are drawbacks with reusing collections of open species interaction networks for
deducing topological properties therein (Dunne, 2006; Pringle and Hutchinson, 2020). In particular,
open networks have been built by different sets of researchers using different definitions for their
nodes and edges, based on observational data collected in different ways (May, 1983). Hence, these
networks are topologically different, but in unknown ways, since the protocols used to build each
network are missing, if not extremely underreported (Poisot et al., 2021). This makes it impossibly
difficult to appropriately use collections of open networks—without effective controls—to infer drivers
of their topology.

Lacking comprehensive information regarding how each open network was built, researchers
often resort to using proxies derived from the network’s topology to attempt to control for inherent
topological differences that are presumably not the result of ecological drivers. A commonly adopted
control included in statistical analyses is sampling intensity (Schleuning et al., 2012), defined as

sampling intensity =

√
number of interactions in network√

number of rows in network · number of columns in network
, (1.2)

which can be thought of as a normalizing statistic that measures the average amount of effort
used to characterize the interactions of each species in a network. Various null models (e.g.,
link randomization of an empirical network) are also commonly adopted as a baseline for
comparison (Dormann et al., 2017). However, challenges persist in understanding how statistical
significance relates to biological relevance (Artzy-Randrup et al., 2004; Fründ et al., 2016).

1.2.5 Seasonality and species interaction networks

Communities are well documented to undergo structural changes when measured across time and
space, yet most studies that examine these changes typically focus solely on variations in their
species composition (Anderson et al., 2011). While it is trivial that the presence of two species is a
prerequisite for an interaction to occur, it is not the only condition, as interactions may or may not
occur even when both species are present (Poisot et al., 2015).

A particularly prevalent global driver of community topological change across time and space
is seasonality, although it remains understudied. These predictable environmental oscillations
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(e.g., temperature, precipitation) exert profound effects on species diversity, abundance, and
interactions (Grøtan et al., 2012; Tonkin et al., 2017). For example, seasonality has been invoked
to explain latitudinal structuring of bipartite species interaction networks (Song et al., 2017), the
topology of stream food webs (Thompson and Townsend, 1999), community structure (Chesson,
2000), and community productivity (Robinson et al., 2013).

1.3 Thesis outline

The primary goal of my thesis is to investigate processes and drivers that shape ecological community
topology using network theory. Generally, I investigate how species interaction network topology
changes across both time and space in response to seasonality, as well as study how the ways in
which researchers model ecological communities as networks perhaps determines their topology.

1.3.1 Chapter 2:—Inferred seasonal interaction rewiring of a freshwater
stream fish network

The study of seasonal climatic variability on community topology is typically limited to communities
consisting of species with small body sizes, which have interactions that are easily tractable. To
overcome this issue, I apply a novel network construction method that uses time series abundance
data to infer interactions between any species counted in the community. By building a fall and a
spring network from freshwater fish abundances measured during these two seasons, I am able to
quantify the two ways in which network topology can change across seasons, which are: (i) differences
in species composition across the two seasons, and (ii) differences in interactions between species
present in both seasons.

1.3.2 Chapter 3—No strong evidence that modularity, specialization, or
nestedness are linked to seasonal climatic variability in empirical
bipartite networks

While seasonal climatic variability has been invoked to explain community network topology for
small bodied species, most studies test their hypotheses using a few networks (i.e., n < 30) and
across a single type of ecological community. Using the largest dataset of open bipartite species
interaction networks yet collected—consisting of five different types of communities (i.e., plant-
pollinator, plant-ant, seed-dispersal, plant-herbivore, and host-parasite)—I more comprehensively
test whether environmental variability explains nestedness, modularity, or specialization.

1.3.3 Chapter 4—How network size strongly determines trophic
specialization: A technical comment on Luna et al. (2022)

Collections of open species interaction networks are often adopted as data for testing hypotheses
about the topology of ecological communities. However, few studies attempt to control for differences
in how each network was built, severely limiting the rigor of findings derived from open networks.
This chapter is devoted to testing the robustness of claims regarding ecological communities from
a recent publication that used open networks as their data source. Specifically, I test whether open
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plant-pollinator bipartite network specialization is best explained by multiple ecological variables,
when I also account for differences in how each network was built via measures of (i) sampling
intensity, and (ii) network size (i.e., total number of species included in the network).

1.3.4 Chapter 5—Shortcomings of reusing species interaction networks
created by different sets of researchers

Accounting for differences in how open networks were built is necessary for effective inference when
using them. While controls like sampling intensity and network size are sometimes used, their efficacy
is likely low as they do not directly account for the many nuances in variations of protocols adopted by
researchers that build the networks. In this Chapter, I attempt to uncover the sources of topological
differences in open networks by evaluating structural differences within subsets and across subsets
of bipartite networks from Chapter 3, with particular focus on open networks sourced from the same
publication. Since networks sourced from the same publication are built using consistent construction
methodologies, sampling strategies, and exposed to comparable biological and environmental factors,
publication may bias their bipartite networks’ topology to be similar.

1.3.5 Chapter 6—Publication-driven consistency in food web structures:
Implications for comparative ecology

Drawing on the results of Chapter 5, in this Chapter, I extend the network analysis to food webs
to investigate whether the publication source of each open food web predominantly influences their
topology. Unlike bipartite networks, food webs are less constrained in terms of the interactions nodes
can have, making it uncertain if the same publication effect on network topology holds. Given that
both bipartite networks and food webs play an eminent role in network ecology for informing our
understanding of communities, this generalization holds significant importance.

1.3.6 Chapter 7—Final remarks

As an overview, I discuss the results of all Chapters and their implication for ecology. In particular,
I emphasize recommendations for enhancing the utility of species interaction networks, focusing on
improvements in data collection and modelling techniques.
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Chapter 2

Inferred seasonal interaction rewiring
of a freshwater stream fish network

A version of this chapter has been published as: Brimacombe, C., K. Bodner, and M.-J. Fortin.
Inferred seasonal interaction rewiring of a freshwater stream fish network. Ecography, 2021, 44:219–
230.

2.1 Abstract

Despite evidence that seasonal variation may lead to the persistence of competing species, studies on
the effect of seasonality on community network structures are sparse. Identifying whether seasonal
network changes result from species turnover or rewiring (i.e., rearrangement of interactions among
species), also remains understudied in multi-trophic communities. Using species abundance data for
38 species over three years (from nine sites across central/eastern United States) and a novel tree-
based inference method, we constructed seasonal networks for a multi-trophic freshwater stream fish
community. We found that seasonality influences species interactions, particularly through rewiring
(81%) compared to species turnover (19%). Moreover, the number of rewiring interactions was best
explained by fish status as a piscivore/non-piscivore and species maximum length (R2 = 0.41). Our
findings suggest that rewiring may be a dominant process in stream fish communities experiencing
seasonal environments and that traits linked to trophic level could be a good indicator of a species’
contribution to rewiring. As networks dominated by rewiring may be more robust, this network
approach could be a valuable conservation tool for identifying which biological relationships must
be retained for communities to avoid extinction.

2.2 Introduction

Ecologists recognize that species interactions are a cornerstone in determining biodiversity and
ecosystem functioning (Bascompte and Jordano, 2007; Goudard and Loreau, 2008). Particularly,
species interactions are central in the evaluation of community stability which can be measured
using a system’s resilience, robustness, and resistance to perturbations (Ives et al., 1999; Ives and
Carpenter, 2007; Donohue et al., 2013). Indeed, interactions can mediate the negative effects of
environmental change (Brooker, 2006; Suttle et al., 2007) and hence are essential for continued
ecosystem persistence in the face of global change.

Species interactions vary across both space and time (Hagen et al., 2012; Rasmussen et al., 2013;
Tylianakis and Morris, 2017; Pellissier et al., 2018; Olivier et al., 2019). Temporal heterogeneity, in
particular seasonality, has been invoked to explain biodiversity and community structure (Tonkin
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et al., 2017). For example, seasonality has been shown to minimize competitive interactions and
help stabilize total species abundances (Shimadzu et al., 2013), as well as play a role in maintaining
structure and diversity in communities [e.g., Fitzgerald et al. (2017)]. Consequently, as environments
experience regular seasonal oscillations (Tonkin et al., 2017), the influence of seasonality on species
interactions is pervasive (McMeans et al., 2015).

From a community perspective, species interactions can be analyzed using network theory and
seasonality can be incorporated by constructing and comparing separate species interaction networks
representing different seasons [e.g., CaraDonna et al. (2017)]. The properties of seasonal species
interaction networks can then be assessed based on their topological differences due to species
turnover and interaction rewiring [i.e., the changes in the interactions between the same species
across space or time despite both species remaining present] (Poisot et al., 2012a). While seasonal
species turnover or rewiring may dominate a system, they act in concert (Alarcón et al., 2008;
Petanidou et al., 2008; Olesen et al., 2011; CaraDonna et al., 2017; Schwarz et al., 2020). Identifying
the relative contribution(s) of each to seasonal network topology is important as systems dominated
by rewiring may be more robust to perturbations [e.g., Kaiser-Bunbury et al. (2010); Saavedra et al.
(2016a); Vizentin-Bugoni et al. (2020)]. Additionally, as traits have been shown to be an important
driver of ecological network structure (Eklöf et al., 2013), determining how species traits relate to
seasonal rewiring is a critical, yet unexplored component for understanding ecosystem dynamics.

Temperate freshwater stream ecosystems are well-suited to study the effects of seasonality as
they experience regular seasonal variations from differences in shading, temperature, disturbance,
and productivity (Thompson and Townsend, 1999). This strong influence of seasonality can have
consequences for fish community assemblages (Junk et al., 1989; Peterson et al., 2017), making multi-
trophic stream fish communities [e.g., Winemiller (1990); Peterson et al. (2017)] an ideal system for
studying seasonal rewiring. However, observational interaction data may not always be accessible.

Indeed, due to the sampling effort required (Alarcón et al., 2008) and the difficulty in
observing certain types of interactions [e.g., competition] (Faisal et al., 2010), few systems have the
observational data required to produce observed temporal interaction networks. These challenges
often restrain seasonal species interaction networks to few trackable system such as plant-pollinator
networks [e.g., Alarcón et al. (2008); Petanidou et al. (2008); Olesen et al. (2011); Burkle et al.
(2013, 2016); Rasmussen et al. (2013), but see Baird and Ulanowicz (1989); Yodzis and Winemiller
(1999); Carnicer et al. (2009); Saavedra et al. (2016a); Lopez et al. (2017); Peterson et al. (2017);
McMeans et al. (2019) for notable exceptions].

To palliate the limitations related to direct interaction data, inferential methods that estimate
species interaction networks have been proposed as an alternative to their empirically derived
counterpart (Morales-Castilla et al., 2015). Inferential methods are reproducible, allow for a wider
range of species given they require less sampling effort, and can detect interactions that are
not readily observable (Faisal et al., 2010). While most inferred ecological interaction networks
are constructed using species co-occurrence methods, they have been criticized for elucidating
false interactions and for failing to detect true pairwise species interactions (Blanchet et al.,
2020). A false interaction may arise due to species responding similarly to the same environmental
factors (Peres-Neto et al., 2001) while true interactions may not be detected due to the coarseness
of presence/absence data (Sander et al., 2017). Joint species distribution models [e.g., Pollock et al.
(2014); Ovaskainen et al. (2016)] have been touted as a more robust method to infer community
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structure as they incorporate abiotic factors into their analysis (D’Amen et al., 2018). However,
these models are also often built using co-occurrence data and therefore suffer the same limitations
as other methods that rely on presence/absence data to infer species interactions (Blanchet
et al., 2020). A promising approach proposed by Momal et al. (2020) addresses limitations of
presence/co-occurrence data by utilizing species abundances (instead of presence/absence data)
and environmental covariates within a joint species distribution modeling framework. Including
abundance measures provides richer information for capturing interactions (Blanchet et al., 2020)
while the inclusion of environmental factors helps prevent spurious interactions in the network.

In this paper, we investigate seasonal changes in a multi-trophic freshwater stream fish community
by creating seasonal networks using stream fish abundances (NEON, 2020) and a novel tree-based
inference method proposed by Momal et al. (2020). Using this method, we constructed two inferred
fish interaction networks for fall and spring and examined their topological differences. Specifically,
our objectives were to: (i) quantify the influence of seasonal interaction rewiring and species turnover
(i.e., β-diversity); and, (ii) evaluate whether seasonal changes in species interactions were related to
species-specific traits.

2.3 Materials and methods

2.3.1 Overview

Using the sampled freshwater fish abundances carried out by the National Science Foundation’s
National Ecological Observatory Network (NEON), we analysed abundance data by season (either
fall or spring). Due to convergence issues in the network inference methods, yearly information
had to be ignored during network construction. To ensure that year did not substantially influence
the dynamics of the system, LASSO Poisson regressions (Friedman et al., 2010) were used to test
the effect of year on species abundances. We found that the addition of year did not substantially
improve the species abundance predictions, allowing us to pool data based on the season the sample
was taken. Inferred seasonal interaction networks were created via a two step-process: (i) construct
fall and spring Poisson lognormal (PLN) models (Chiquet et al., 2018, 2019), a type of joint species
distribution model that measure species interactions while controlling for environmental factors; and
(ii) apply the EMtree algorithm (Momal et al., 2020), which uses the fitted PLN models to create
seasonal species interaction networks, using tree structured graphical models. We then quantified
species turnover and rewiring using a measure of β-diversity (Poisot et al., 2012a) across the two
seasonal networks. Finally, we investigated (using linear regressions) how species-specific traits could
be used to explain the total number of interactions classified as rewiring, and species turnover.

2.3.2 Fish data

Stream fish abundances were obtained from the “Fish electrofishing, gill netting, and fyke netting
counts” dataset provided by NEON (2020). This dataset contains fall and spring stream fish
abundances made via electrofishing under strict sampling protocols [see Jensen (2019)]. Additionally,
this dataset included abiotic data such as environmental, geographic, and sampling design factors
(e.g., date of sampling, water temperature, dissolved oxygen, latitude), and fish length and fish
weight data for each fish caught, for 28 aquatic monitoring locations across the United States.
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To reduce yearly variation across seasons when pooling data into seasons, we only included sites
that had consecutive seasonal measurements within a year, i.e., both fall and spring abundance
measures made per year. Thus, our analysis used abundance samples from 9 sites spanning the
United States between 2017–2019 (Figure 2.1).

The abundance dataset contained taxonomic information, but samples varied on the level of
identification. Hence, we restricted our analyses to species with species-level identification as we
were concerned that a higher taxonomic grouping would obscure key biological interactions. We
excluded samples from the analysis if environmental conditions were not recorded.

For our trait analysis, we obtained species-specific traits from FishTraits (Frimpong and
Angermeier, 2009) and obtained species’ maximum length and maximum weight from the NEON
dataset containing the samples used to construct our networks. FishTraits is an extensive database
that contained traits for our species except for Etheostoma lachneri, which we supplemented with
those of Etheostoma raneyi, a close relative (Ross, 2012). Furthermore, we obtained feeding behaviour
information from NatureServe (NatureServe, 2020) where fish were classified as belonging to at least
one of the following non-exclusive categories: (i) non-feeder (non-parasitic lamprey species), (ii)
herbivore, (iii) invertivore, and (iv) piscivore; see Table 2.1.

2.3.3 Testing for yearly abundance trends

We tested for yearly trends in each pooled seasonal dataset using LASSO Poisson regression
models (Friedman et al., 2010) on each species data. LASSO Poisson models are a type of penalized
generalized linear model for count data that forces less contributive coefficients to be zero. Generally,
for each species we compared the predictive ability of (i) Site name, and (ii) Site name + Year, to
test for yearly trends and to determine if pooling data across years into seasons was appropriate. Site
name was included in both models to capture site-specific abiotic measurements as well as account
for the variability of species presence/absence across sites. The withheld seasonal datasets used
for predictive purposes included each site’s most recent abundance sample for that season. We
determined the “best” model by calculating their predictive performance on the withheld dataset. We
used two metrics for predictive performance: the cumulative root mean squared error (RMSE) and
the cumulative RMSE for species with abundances greater than 0 in the prediction dataset (“RMSE
obs>0”). All LASSO Poisson regression models were implemented using glmnet package (Friedman
et al., 2010).

2.3.4 Constructing and testing Poisson lognormal (PLN) models

To model joint species abundances, required for inferring seasonal interaction networks, we first
fitted, and tested a suite of PLN models (Chiquet et al., 2018, 2019) on the pooled seasonal
dataset. PLN models are joint species distribution models that can be used to infer joint species
abundances and interactions using environmental factors and species’ abundance data. Here, we
built models that included different combinations of (i) water temperature during sampling,
(ii) dissolved oxygen during sampling, (iii) specific conductivity during sampling, (iv)
elevation at sampling site, (v) date of abundance sampling, (vi) latitude at abundance
sampling, and (vii) site name. We also included sampling effort in our models as excluding
this effort reduces the comparability of abundance samples measured at different places and
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times (Chiquet et al., 2019). Sampling effort was included for each abundance sample and was pre-
calculated as a sum of the total counts of fish caught, a common approach for including sampling
effort in models (Paulson et al., 2010). Altogether, the nine PLN models built for each season
accounted for the following environmental variable(s): Site name, Water temperature, Dissolved
oxygen, Elevation, Specific conductivity, Site name + Water temperature, Site name +

Dissolved oxygen, Site name + Elevation, and Site name + Specific conductivity.
We evaluated our seasonal PLN models by using non-traditional Bayesian Information Criterion

(BIC), an information-theoretic approach; and by calculating their predictive performance on
withheld future abundance data. Note the non-traditional BIC scores represent the variational
lower bound of the BIC, which account for the model’s variational log-likelihood and its number
of parameters [see Momal et al. (2020) for more details]. Overall, higher scores indicate better
fitting models. To assess predictive performance, we predicted species abundances and compared
the RMSE and RMSE obs>0. The models with the best BIC score and lowest RMSE scores were
the models selected. As we use both an in-sample and out-of-sample measurement (i.e., information-
theoretic techniques and RMSE on withheld data), the models should have higher accuracy and
lower uncertainty (Bodner et al., 2020). All construction and testing of PLN models were done
through the PLNmodels package (Chiquet et al., 2018, 2019).

2.3.5 Species interaction networks from EMtree

Separate Fall and Spring species interaction networks were inferred using the EMtree method
proposed by Momal et al. (2020). Generally, EMtree combines both (i) PLN models to represent the
joint distribution of species abundances and (ii) spanning tree graphical models to create undirected
species interaction networks, where a spanning tree is defined as a subgraph of a network that
connects all nodes with the minimum number of possible connections (Dale and Fortin, 2014). Note
that while the number of interactions between all nodes is minimized and the minimum bound on
the number of interactions a node may have in a tree is one, a node may have more than one or two
interactions.

Network inference can be challenging due to the huge number of possible graphs for a given
set of nodes (e.g., 1013 undirected graphs given 10 nodes). All network inference approaches
try to infer the underlying true network configuration but are impeded by this vast number of
configurations (Momal et al., 2020). To overcome this issue, EMtree employs a spanning tree-based
approach, which is a technique designed to reduce the possible number of configurations given by the
PLN model’s joint distribution of abundances, to make inference tractable in the graph space (Momal
et al., 2020). The links in the spanning tree represent possible interactions between species. EMtree
constructs fitted species interaction networks by averaging across all spanning trees and employs an
advanced tree-based algorithm to maximize the likelihood of the inferred species interactions from
the PLN models. The EMtree approach combines both pairwise potential direct (e.g., predator-prey
interactions) and indirect (e.g., indirect competition) interactions, represented as a single undirected
connection between species’ nodes. In the resulting networks, each connection was weighted with a
value between zero and one, representing the conditional probability of each connection being part
of the “true” underlying network. We assumed that if an interaction had a non-zero weight, i.e., it
is suspected to be part of the network, it existed in the network.

To create the network, it was necessary to select a minimum threshold as a cut-off for
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inferring species connections. This threshold can be used as a metric for assessing the reliability
of connections with higher thresholds indicating higher reliability. Nonetheless, a guideline is to use
the highest threshold before a node (i.e., species) loses all connections (Bassett et al., 2006). From
a biological perspective, a connected network can emerge when just a few generalist species are
present (Martín González et al., 2010). Hence, we created networks using thresholds between 0;
the minimum possible threshold assuming virtually all connections, and 1; the maximum possible
threshold producing no connections, and chose the network built with the highest threshold that
remained connected. We increased network robustness by iteratively resampling the network 100
times. The EMtree approach was implemented using the EMtree package (Momal et al., 2020), and
network visualization was accomplished through the igraph package (Csárdi and Nepusz, 2006).

2.3.6 Beta-diversity

To estimate species turnover and rewiring in our seasonal networks, we quantified the β-diversity
across Fall and Spring. We adopted a β-diversity metric, βWN , which measured the interaction
turnover between two networks, with 0 ≤ βWN ≤ 1 (Poisot et al., 2012a). This metric can be
represented by the following equation:

βWN =
a+ b+ c

(2a+ b+ c) /2
− 1 (2.1)

where a was the number of interactions shared between networks (Fall and Spring), and b and
c were the number of interactions unique to each network, respectively. Hence, larger values of
βWN indicated a greater difference between the two networks. We further isolated the effects of
species turnover, βST , and rewiring, βRW , from βWN using the equation βWN = βST + βRW .
βRW was evaluated by considering only the two subsets of networks—one in the Fall and one in
the Spring—where species have interactions in both, and its numerical value was calculated using
eq. (2.1). Additionally, we assessed total species dissimilarity between seasons (βS) using eq. (2.1),
where a, b, and c were the appropriate species identities.

2.3.7 Total species turnover, total rewiring, and species traits

To calculate the total number of species turnover and rewiring connections for each species, we
identified each changing connection in each seasonal network as being one of the following: (i)
“rewiring”, where two species present in both seasons were linked in one season but not in the other;
or (ii) “species turnover”, where one or both species were present only in a single season, and the
connection existed only for a single season. All connections preserved across seasons were classified
as “maintained”.

Using linear models, we examined the relationships between the total number of rewiring (i.e.,
sum of the connections classified as rewiring), and the total number of species turnover connections
(i.e., sum of the connections classified as species turnover), with species traits, abundances, feeding
preferences/trophic-level, and habitat preferences.

All analyses conducted were done in R version 4.0.2 (R Core Team, 2021).
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2.4 Results

2.4.1 Data

We restricted our analysis to species that appeared in a seasonal dataset at least five times as
fewer than five occurrences resulted in convergence issues when using the EMtree algorithm. This
restriction resulted in 32 species in the Fall, 34 species in the Spring, with 29 species common to
both seasons (Table 2.1), which contributed to a seasonal species dissimilarity score of βS ≈ 0.13.

2.4.2 Testing for yearly abundance

In the Fall, the LASSO Poisson regression of Site name (RMSE: 10.35, RMSE obs>0:
27.14) performed better than Site name + Year (RMSE: 17.94, RMSE obs>0: 34.02)
(Table 2.2). Furthermore, in the Spring, the LASSO Poisson regression model of Site name (RMSE:
7.35, RMSE obs>0: 19.72) performed equally well as Site name + Year (RMSE: 7.11, RMSE
obs>0: 19.28) (Table 2.2). Hence, Year did not contribute significantly to predicting Fall or Spring
abundances and thus yearly variation was not deemed as a significant factor for either season.

2.4.3 PLN models

Using each respective pooled seasonal datasets, the three PLN models with highest BIC scores
for both seasons were Site name (Fall BIC: −6419, Spring BIC: −8159), Site name + Water

temperature (Fall BIC: −6473, Spring BIC: −8237), and Site name + Dissolved Oxygen (Fall
BIC: −6456, Spring BIC: −8219) (Table 2.2). Site name also had the best BIC score and predictive
performance in both the Fall (RMSE: 4.2, RMSE obs>0: 11.1) and Spring (RMSE: 5.0, RMSE obs>0:
12.4). Hence, the Site name PLN models, representing the inherent abiotic and spatial factors not
measured at each site, were selected as best for both seasons.

2.4.4 Inferred seasonal networks from EMtree

We inferred each seasonal species interaction networks using EMtree paired with the Fall and Spring
Site name PLN models (Figure 2.2). We tested potential threshold cut-offs for each network and
determined the highest appropriate threshold to be 0.6, since above this value the network became
disconnected. Furthermore, as many species in our community were generalists, we expected that
the underlying network to be connected (Martín González et al., 2010). Thus, all network metrics
presented correspond to seasonal networks constructed with a threshold of 0.6.

2.4.5 Beta-diversity

The topological changes across seasons were apparent when quantifying topological change using
β-diversity metrics. Specifically, interaction turnover was βWN ≈ 0.62. In other words, there was a
relatively large difference in the topology of the Fall and Spring networks. This seasonal topological
change was largely driven by interaction rewiring (βRW ) rather than species turnover (βST ). In
particular, we found that βRW /βWN ≈ 81%, whereas βST /βWN ≈ 19%.
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2.4.6 Total species turnover, total rewiring, and species traits

Using linear regression models, we investigated how different species traits and abundances influenced
the total number of rewiring (blue bars of Figure 2.3). While we did not find any meaningful models
regarding key life history traits or species’ abundances, we found that species traits related to
maximum length and feeding helped explain around 41% of the total number of rewiring. Specifically,
total number of rewiring had a significant and negative relationship with a species’ piscivore status
and a significant positive relationship with the interaction between maximum length of a species
and its piscivore status, Figure 2.4 (βMax length = −0.03, p > 0.1; βPiscivore = −6.10, p < 0.01;
βMax length·Piscivore = 0.04, p < 0.01; adjusted R2 = 0.41). The negative relationship between
piscivore status and the total number of rewiring suggested that non-piscivores have a greater number
of rewiring than piscivores when controlling for the maximum length of a species. Interestingly,
despite maximum length not being significant, its interaction with piscivore status is significant
indicating that for piscivores, there is a strong positive relationship between the total size and the
number of rewiring that does not exist for the non-piscivores.

We also note that while no specific traits or species abundances explained the total number
of species turnover connections (purple bars of Figure 2.3), approximately 80% of fish present for
only a single season had preferences for large rivers. This percent is significantly higher than the
approximately 45% of the non-turnover fish that shared this preference.

2.5 Discussion

The role of seasonality in shaping species interaction networks requires better assessment for
understanding the stability and function of community assemblages. So far, most studies analyze
seasonality in small-size organismal bipartite networks (e.g., plant-pollinator networks), yet limited
evidence exists on how seasonality shapes multi-trophic networks across communities of larger
species. Despite increasing evidence that topological changes arise due to rewiring and species
turnover (Alarcón et al., 2008; Petanidou et al., 2008; Rasmussen et al., 2013; Lopez et al., 2017;
Schwarz et al., 2020), as of yet, identifying which process is dominant and more critically, quantifying
the contributions of each process, is rarely done across seasons for multi-trophic networks. Here,
we provide a study on inferred seasonal multi-trophic networks that provides evidence of seasonal
change using interaction turnover, and that seasonal rewiring may be a driving process of community
changes in stream fish communities.

Given the strong evidence of seasonality in stream fish networks (Thompson and Townsend,
1999; Peterson et al., 2017), unsurprisingly, we found evidence that seasonality influenced our
network structure. Indeed, the reported seasonal consumption of the most abundant aquatic
invertebrates (Pinto and Uieda, 2007), and the seasonal dietary shifts of ominvirous and carnivorous
fish (Akin and Winemiller, 2006) highlight the seasonal opportunistic feeding behaviour of many
fish species. The differences in network structure we found between seasons are exemplified by the
degree of its interaction turnover across seasons. As a score of zero indicates networks are identical
and a score of one indicates that networks have no common interactions, our score of βWN = 0.62,
indicates a relatively high differentiation between our seasonal networks.

Beyond classifying network change, identifying the primary drivers of species interactions is
essential for predicting community structure. In our study, we found that seasonal topological
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changes to our inferred network were primarily driven by interaction rewiring (81%) with a small
contribution by species turnover (19%). Consequently, the level of rewiring and turnover we found
in our study mirrors results from other systems. In particular, the amount of seasonal rewiring and
seasonal turnover in our study is comparable to the weekly and mean yearly interactions found in the
rewiring-dominated plant-pollinator networks studied by CaraDonna et al. (2017). While the ratio
of seasonal species to those present in both seasons in our study is lower, this difference in species
dissimilarity is likely in part the result of our requirement that species need to be sampled at least
five times. The inclusion of these rare species would likely increase our species dissimilarity measure
but would not have changed our overall network structure since they need to be abundant enough
to warrant interactions (Poisot et al., 2015). Thus, our study contributes to the growing literature
of the potential ubiquity of rewiring across different systems. However, we recognize that high levels
of rewiring may be more common in some systems. Therefore, we hope future studies continue to
quantify rewiring across study systems to further test its ubiquity and to identify cases and species
where it may not be as dominant.

Despite highlighting the need to resolve networks along a temporal dimension, our results provide
a general prediction for how these seasonal communities may respond to disturbances. If species
subject to seasonality are more strongly driven by rewiring, we may also expect these species
to be more robust when subject to other types of disturbances (CaraDonna et al., 2017). For
example, Kaiser-Bunbury et al. (2010) found that in plant-pollinator networks, rewiring increased
community robustness when faced with community species loss, Saavedra et al. (2016a) found that
seasonal interactions play a key role in maintaining the homeostatic state of ecological communities,
and Vizentin-Bugoni et al. (2020) found that rewiring increased estimated robustness in plant-
humming bird networks. Indeed, it would be of interest to conservation managers to determine if
their systems are robust to future perturbations, given that their system also undergoes seasonal
rewiring. However, while in general we expect rewiring to have a stabilizing effect, rewiring has been
shown in some cases to have a negative effect on the persistence of both natural and computer-
generated food webs (Gilljam et al., 2015). Hence, future studies should explore whether stability
due to rewiring holds for different disturbance types, different ecosystems/organisms, and under
which conditions it switches from a stabilizing to a destabilizing effect.

2.5.1 Total rewiring, total turnover, and species traits

As fish species’ traits may have high plasticity (Frimpong and Angermeier, 2010), detecting
relationships between traits and fish interaction dynamics can be an especially arduous
task. Furthermore, given that rewiring can be both an active and/or passive process, it is perhaps
especially difficult to identify key traits describing their ability to rewire. For example, a predator
will actively rewire when it switches a prey item, whereas its prey passively rewires in response. In
this case, we do not expect the predator and prey to exhibit the same traits. As traits related to
the passive and active process of rewiring likely differ, we do not expect to find an all-encompassing
relationship between any single trait and the total number of rewiring.

Nevertheless, the significant relationship we found between the total number of rewiring and the
interaction between the maximum length of a species and its piscivore status

(
R2 = 0.41

)
likely

captures traits associated with active rewiring. Indeed, larger species of piscivores generally do
consume a larger range of prey size than their smaller counterparts (Gaeta et al., 2018). This active
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rewiring may also capture the stabilizing ability of piscivores. Since these large mobile predators are
able to track and exploit multiple abundant prey across multiple trophic levels, piscivorous fish can
promote food web stability through reduced interaction strength and reduced predation pressure
when prey density is low (Kondoh, 2003; McCann et al., 2005). In addition, when maximum length
was held constant, we also captured a significant negative relationship between piscivore status and
the total number of rewiring. This negative relationship indicates that overall, non-piscivores have a
higher total number of rewiring which may be in part due to many smaller non-piscivores passively
rewiring with a few larger key predators. Additionally, as our network captures more than food web
dynamics, this negative relationship may also be capturing rewiring due to competition and other
biological interactions. If this is the case, lower trophic levels may be more heavily competing with
different species for space and food across seasons whereas piscivores may maintain competitive
interactions with the same species year-round.

We were unable to find any significant traits related to species turnover. This is not particularly
surprising as unlike rewiring interactions, turnover interactions are dependent upon the arrival and
departure of only nine species in our system. We expect that an increased species turnover rate
would allow for relevant traits to be more easily detected. Despite not finding any significant traits
related to the total turnover interactions, interestingly, all turnover species were those that preferred
large rivers. Given this, we suspect that these turnover fish species may be seasonally migratory.

2.5.2 Limitations

The main limitation of our study is the dependence on inferred interactions from abundance data. As
there are no direct observations of the interactions, there is always the possibility that these
interactions do not exist. However, the benefits of approaches like the one used here, should not be
overlooked. Despite there being no direct observations in our system, the inferred network approach
allowed us to hypothesize seasonal networks for a previously unexplored community. In general,
inferred network approaches not only allow us to reduce the resources required to infer species
interactions but can propose interactions when observation is difficult (Faisal et al., 2010). Indeed,
in our inferred seasonal network, we detected an interaction between S.trutta and S.fontinalis which
had been hypothesized and only captured through experimental manipulation (Fausch and White,
1981). Given that S.trutta and S.fontinalis are heavily monitored, we could validate our proposed
interaction. However, most fish species are allocated fewer resources so there is little information
available, particularly on their interactions. Ultimately, the inferred network approach allows us to
generate new hypotheses about how these unobserved species may be interacting. The next steps
forward could be to validate some of these key inferred interactions using experiments or in the case
of predator-prey interactions, gut content analysis.

Another potential limitation in our study is the pooling together of yearly data (Jordán and
Osváth, 2009). Ideally, we would have constructed networks for each season per year without pooling
data, allowing us to accommodate both yearly and seasonal variation in our networks. However, given
the data available, this was not possible due to convergence issues. To address the potential for yearly
variation, we limited sites to those that had every seasonal abundance measurement between 2017–
2019 and also ensured there were no substantial yearly trends in the abundance data using LASSO
Poisson regression. In future, data collection efforts for these types of analyses should seek to collect
greater abundance data per year such that both seasonal and yearly networks can easily be created.
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2.5.3 Applications

Given the increasing availability of temporal abundance measurements, the robust EMtree approach
we use here will likely be a valuable tool in the future to further disentangle species interaction
networks. In particular, since it has been suggested that food webs rewire in predictable ways
due to climate change (Bartley et al., 2019), this method may be used to investigate how
interaction networks rewire in response to climate change where species interaction information
is not available. Moreover, since it is widely recognized that interactions are the architecture of
biodiversity (Bascompte and Jordano, 2007), the maintenance of these interactions, even those that
are seasonal, is a necessity to maintain ecosystem stability. In this regard, the approach we adopted
for our analysis could be valuable for conservation as it can be used to hypothesize key biological
relationships that must be retained for species to avoid extinction (Heinen et al., 2020).

2.6 Conclusion

The approach we take for network inference highlights the utility of non-traditional methods (e.g.,
species abundance data) to infer interactions and thus community structure. Although our network
inference is not without its uncertainties, we demonstrate how EMtree methods can be used to
elucidate network structure. Overall, we find evidence that differences in our seasonal networks
appear to be driven mainly by rewiring as compared to species turnover. Additionally, while
there is recognition that traits are important factors of community assembly, our findings that
maximum length and piscivore status contributes to a species’ number of rewiring provide evidence
that traits may influence how temporal interaction networks change. Finally, our study highlights
the need to consider communities as evolving through time. Since seasonal change is capable of
dramatically altering network topology, failing to capture temporal heterogeneities may cause us to
mischaracterize community structure and functions.
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2.7 Figures

Figure 2.1. (Top) The nine NEON stream sampling locations across the United States used in this
study; (Bottom) monthly dates of freshwater fish abundance sampling for each of the nine sites
used, where green boxes indicate Spring month dates, yellow boxes indicate Fall month dates, and
the numbers inside the boxes are the number of days in which that month was sampled. Each day
sampled represents multiple reaches sampled for abundances at that site.
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C. funduloides
I. gagei

N. leptacanthus
C. girardi

R. atratulus
G. affinis

P. nigrofasciata
N. exilis

P. promelas
L. macrochirus

A. melas
C. erythrogaster

E. spectabile
F. notatus

L. aepyptera
F. olivaceus

N. baileyi
N. funebris

N. leptocephalus
C. anomalum

E. lachneri
E. nigrum

L. chrysocephalus
E. stigmaeum

E. swaini
H. etowanum
M. carinatum
N. volucellus
R. cataractae
L. megalotis

C. bairdii
C. carolinae
S. fontinalis

A. natalis
L. cyanellus

S. trutta
S. atromaculatus
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Figure 2.3. Number of maintained interactions and altered interactions for piscivores (red text) and
non-piscivores (black text), including total number of rewiring (blue) and total number of species
turnover interactions (purple), in each season using a network threshold of 0.6.
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Figure 2.4. Regression between the maximum length of the fish species (in mm) and its status as a
piscivore against the total number of inferred rewiring for each species, using a network threshold of
0.6. For non-piscivores, the maximum length of the species appears to have a negligible effect on the
total number of rewiring, however for piscivores, there appears to be a strong positive relationship
indicating that the greater the maximum length of the species, the greater the total number of
rewiring for that species (non-piscivore: n = 20, with n = 5, n = 13, and n = 2 for max length
levels, respectively, and piscivore: n = 8, with n = 1, n = 2, and n = 5 for max length levels,
respectively).
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2.8 Tables

Table 2.1. Fish feeding behaviours and total abundances for Fall and Spring in years 2017—
2019. Feeding behaviours correspond to (i) Non-Feed: non-feeding adults correspond to non-parasitic
lamprey species, (ii) Herb: herbivore, (iii) Invert: invertivore, and (iv) Pisc: piscovore.

Total
abundance

Total
abundance

Species Feeding
behaviours Fall Spring Species Feeding

behaviours Fall Spring

Ameiurus
melas Herb, Invert 11 22 Lepomis

cyanellus Invert, Pisc 349 354

Ameiurus
natalis

Herb, Invert,
Pisc 64 53 Lepomis

macrochirus Invert 55 44

Campostoma
anomalum Herb 880 792 Lepomis

megalotis Invert, Pisc 32 52

Chrosomus
erythrogaster Herb 446 439 Luxilus

chrysocephalus Herb, Invert 31

Clinostomus
funduloides Invert 65 200 Micropterus

salmoides Invert, Pisc 5

Cottus
bairdii

Herb, Invert,
Pisc 533 642 Moxostoma

carinatum Invert 15

Cottus
carolinae Invert, Pisc 134 193 Nocomis

leptocephalus Herb, Invert 86 35

Cottus
girardi Invert 796 953 Notropis

baileyi Invert 816 704

Etheostoma
lachneri Invert 73 301 Notropis

volucellus Herb, Invert 71

Etheostoma
nigrum Invert 301 Noturus

exilis Invert 98 98

Etheostoma
spectabile Invert 668 780 Noturus

funebris Invert 37 39

Etheostoma
stigmaeum Invert 38 Noturus

leptacanthus Invert 23 13

Etheostoma
swaini Invert 8 Percina

nigrofasciata Invert 69 37

Fundulus
notatus Herb, Invert 467 528 Pimephales

promelas Herb, Invert 150 163

Fundulus
olivaceus Herb, Invert 70 85 Rhinichthys

atratulus Invert 3559 3087

Gambusia
affinis Herb, Invert 1154 466 Rhinichthys

cataractae Invert 417

Hypentelium
etowanum Invert 13 Salmo

trutta Invert, Pisc 41 16

Ichthyomyzon
gagei Non-Feed 142 125 Salvelinus

fontinalis Invert, Pisc 84 53

Lampetra
aepyptera Non-Feed 131 170 Semotilus

atromaculatus Invert, Pisc 1328 938
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Table 2.2. Model fit (BIC scores, pseudo-R2), and prediction error (RMSE, RMSE obs>0) for each
Poisson lognormal (PLNmodels) and Poisson regression model (glmnet) using n = 32 species for
Fall data, and n = 34 for Spring data. Models were constructed using 74 (Fall) and 94 (Spring)
observations where a single observation is a single sampling abundance measure for multiple species
made at a specific point in a stream at one of the nine NEON sampling locations at a specific
day. “RMSE” (root mean square error) indicates the predictive ability of each model and predicts
for n = 32 (Fall) and n = 34 (Spring) species based on the most recent observations for each of the
nine NEON sites [n = 288 (Fall) and n = 306 (Spring)]. “RMSE obs>0” indicates the predictive
ability (root mean squared error) of each model for presence-only abundances (i.e., observations> 0)
[n = 38 (Fall) and n = 36 (Spring)].

Model
type Variables BIC

scores RMSE RMSE
obs>0 R2

Fall
PLN

Site name −6418.47 4.23 11.11 0.93
Site name + Water temperature −6472.50 6.09 16.29 0.93
Site name + Dissolved oxygen −6456.43 6.14 16.55 0.92

glmnet Site name 10.35 27.14
Site name + Year 17.94 34.02

Spring
PLN

Site name −8158.60 5.00 12.37 0.94
Site name + Water temperature −8236.97 6.66 18.04 0.94
Site name + Dissolved oxygen −8219.05 4.90 12.90 0.94

glmnet Site name 7.35 19.72
Site name + Year 7.11 19.28
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Chapter 3

No strong evidence that modularity,
specialization, or nestedness are
linked to seasonal climatic variability
in empirical bipartite networks

A version of this chapter has been published as: Brimacombe, C., K. Bodner, M. J. Michalska-
Smith, D. Gravel, and M.-J. Fortin. No strong evidence that modularity, specialization, or nestedness
are linked to seasonal climatic variability in empirical bipartite networks. Global Ecology and
Biogeography, 2022, 31:2510–2523.

3.1 Abstract

Aim: Given the influence of seasonality on most ecological systems, an emerging research area
attempts to understand how community network structure is shaped by seasonal climatic variations.
To do so, most researchers conduct their analyses using open networks due to the high cost associated
with constructing their own community networks. However, unwanted structural differences from the
unique sampling and construction methods used to create each open network likely make comparing
these networks a difficult task. Here, with the largest set of open bipartite networks collected to date,
we test whether seasonal climatic variations explain network structure while additionally accounting
for construction/sampling differences between networks.

Location: Trying to approach global.

Time period: Contemporary.

Major taxa studied: Plants and animals.

Methods: Using 723 open bipartite networks, we test whether temperature and/or precipitation
seasonality explains (un)weighted metrics of nestedness, modularity, and specialization across plant-
pollinator, seed-dispersal, plant-ant, host-parasite, or plant-herbivore systems.

Results: Generally, seasonality only weakly explained network structure: at most 16% of the variation
in weighted metrics and 5% of the variation in unweighted metrics. Instead, a control for sampling
bias in networks, sampling intensity, often better explained many of the network structural metrics.
When limiting our analyses to only intensely sampled networks, however, about 33% of the variation
in weighted modularity and specialization was explained by seasonality, but only in plant-pollinator
networks.
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Main conclusions: Altogether, we do not find strong evidence that seasonality explains network
structure. Our study also highlights the large amount of structural differences in open networks,
likely from the many different sampling and network construction techniques adopted by researchers
when constructing networks. Hence, a definitive test for the relationship between network structure
and seasonality across large spatial extents will require a dataset free from sampling and other biases,
where networks are derived from a consistent sampling protocol that appropriately characterizes
communities.

3.2 Introduction

Representation of ecological communities as networks has increased dramatically in the past few
decades (Poisot et al., 2016b; Tylianakis and Morris, 2017; Delmas et al., 2019; Fortin et al., 2021).
With the growing availability of open (i.e., freely available) networks (Salim et al., 2022), there
has also been an initiative in evaluating if and how empirical community networks are structured
across large biogeographical gradients (Pellissier et al., 2018; Poisot et al., 2021). Indeed, given
that the structure of a network is shaped by external perturbations experienced by the modelled
community (Cadotte and Tucker, 2017; Song et al., 2017), it is now recognized that community
structure may only be understood in relation to the environment that the represented community
occupies (Cenci et al., 2018; Song and Saavedra, 2020).

While ecologists have long understood that temporal periodicity, in particular seasonality, are
important components of ecological systems (Tonkin et al., 2017; Firkowski et al., 2022), few studies
have actually investigated the relationship between community strucutre and seasonality in empirical
communities (White and Hastings, 2020). Increasingly, studies are finding that seasonality plays an
important role in shaping empirical ecological communities and their species interactions (McMeans
et al., 2015; Tonkin et al., 2017; Rudolf, 2019; Brimacombe et al., 2021), for instance, by influencing
species coexistence and community stability (McMeans et al., 2015, 2020). Seasonal climatic
variability, therefore, is likely a key factor influencing community network structure at the global
scale (Schleuning et al., 2014; Liu et al., 2021).

To date, most researchers investigating the relationship between climate and community structure
across large spatial extents have primarily used specialization, modularity, and nestedness as
measures of network structure. Specialization measures the degree of species’ niche partitioning in
a community (Blüthgen et al., 2006) [Figure 3.1a]. Modularity captures the degree to which species
interact more strongly with a specific subset of species in a community (Dalsgaard et al., 2017)
[Figure 3.1b]. Nestedness measures the extent to which specialists interact with perfect subsets of
species that generalists also interact with in a community (Song et al., 2017) [Figure 3.1c].

Using these structural measures, researchers have developed some theoretical expectations of how
networks may respond to climatic variability. In seasonal climates where resources can vary greatly
across time, selection may favour networks consisting of generalists and less specialized consumers
that can utilize a broad range of food types (Dalsgaard et al., 2017) leading to increased specialization
towards the tropics. Of course, we would be remiss if we failed to mention that a venerable proposition
of ecology also predicts that specialization increases towards the tropics (MacArthur, 1984; Xing
and Fayle, 2021; Brimacombe et al., 2022a), which may be in part due to less seasonality. Similarly,
modularity may also increase toward tropical regions since selection may favor generalist species
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in seasonal environments who in turn interact with the whole community as compared to more
specialist species in tropical regions that interact with only subsets of species (Welti and Joern,
2015). In contrast, it has been proposed that seasonality may lead to decreased nestedness in the
tropics as compared to the temperate regions (Song et al., 2017) since an ordered network structure
may enhance community tolerance to random perturbations (Saavedra et al., 2016b).

Current empirical findings do not always support these theoretical expectations (Xing and Fayle,
2021) [see Table 3.1 for a list of publications that test for these expectations, or variations thereof].
While some studies find that specialization tends to increase towards the tropics (Dalsgaard et al.,
2011), others find the opposite—specialization decreases towards tropical regions (Schleuning et al.,
2012; Dalsgaard et al., 2017). Furthermore, some empirical studies have found nestedness to increase
with temperature seasonality (Song et al., 2017), while others have found nestedness to decrease with
increasing temperature variability between years (Welti and Joern, 2015). Empirical studies exploring
modularity also have results that parallel those of specialization and nestedness where some studies
find that modularity decreases with increasing latitude and temperature variability (Trøjelsgaard
and Olesen, 2013; Welti and Joern, 2015) whereas others find modularity increases with seasonality
and latitude (Schleuning et al., 2014; Dalsgaard et al., 2017). Other studies have also found no
relationships between these measures and climatic variability or latitude (Ollerton and Cranmer,
2002; Morris et al., 2014; Doré et al., 2021).

These conflicting relationships of how networks respond to climate may be due in part to
the differences in how particular systems respond to external perturbations (Song and Saavedra,
2020; Zvereva and Kozlov, 2021). Since antagonistic and mutualistic interactions can lead to
different dynamics (Allesina and Tang, 2012) and can have distinct fitness outcomes for interacting
species (Guimarães Jr., 2020), it had been hypothesized that antagonistic and mutualistic networks
could be structured differently (Lewinsohn et al., 2006; Thébault and Fontaine, 2010). Only recently
has it been shown that antagonistic and mutualistic networks exhibit differences in their respective
nestedness and modularity values after controlling for temperature seasonality (Song and Saavedra,
2020). Therefore, evaluating how communities and their network representations respond to climatic
seasonality may at the very least require appropriate control for the effects of whether networks are
classified as antagonistic or mutualistic.

While climatic seasonality may structure networks in theory, detecting and quantifying the nature
of such relationships may be extremely difficult to capture in practice. First, of the studies that
investigate network structural variation across large spatial extents, most only consider a small
number of communities that are not representative of the vast heterogeneous environmental gradients
across the Earth (Poisot et al., 2021). Consequently, even if a statistically significant trend is found
between network structure and seasonality, this relationship may not be an accurate delineation of
the true relationship since few networks have been used to find such a trend. Given the very real
practical difficulty of collecting community wide pairwise interaction data (Jordano, 2016; Pellissier
et al., 2018), it is understandable that most studies are limited to few networks, e.g., n < 30

[e.g., Olesen and Jordano (2002); Schleuning et al. (2014); Dalsgaard et al. (2017)]. Second, of
the networks available, there are other practical sampling effects that could impede and blur the
potential theoretical signal that may exist between network structure and seasonality. For instance,
the length of time used to characterize a community, e.g., days, months, or years (CaraDonna et al.,
2017, 2021; Schwarz et al., 2020), the amount of geographical area used to characterize ecological
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communities (Galiana et al., 2018), or the type of sampling procedure used when collecting ecological
data (Jordano, 2016; de Aguiar et al., 2019), can all influence the depiction of a community as a
network. Altogether, we may then expect that these unwanted sources of structural differences
could mask any trend that may exist between network structure and seasonality. Unfortunately,
many of these unwanted sources cannot be controlled for given that the necessary information is not
contained in corresponding metadata, e.g., the amount of area used to characterize a community for
each network is often not indicated, and so researchers must rely on other approaches to attempt to
control for sampling differences across networks (Brimacombe et al., 2022a).

In this study, we test whether seasonal climatic variability explains the structure of bipartite
networks. While previous studies have performed similar tests, they are often limited to a small
number of networks and/or a few ecological systems (Table 3.1), and thus fail to effectively determine
whether there exist global trends across all networks. Our study then represents the single largest
test of the effect of seasonal variability on plant-pollinator, seed-dispersal, plant-ant, host-parasite,
and plant-herbivore networks.

We consider two approaches. First, we test if the variations in modularity, specialization or
nestedness of weighted plant–pollinator, seed-dispersal or host–parasite networks are explained
by temperature and/or precipitation seasonality in either linear mixed models or linear models
(Figure 3.1d). To help remove detectable structural differences that are due to sampling effects when
characterizing a community as a network via observation, we control for both sampling intensity and
the publication source of each network. We adopt the latter as networks from the same publication
may have more similar network structure than those originating from other publications since these
networks may be sampled in similar ways, e.g., consistency in the amount of time spent sampling
and geographical area used to characterize the community. Second, we test if temperature and
precipitation seasonality explain variation in unweighted metrics of modularity or nestedness while
controlling for whether networks are antagonistic (host-parasite, and plant-herbivore) or mutualistic
(plant-pollinator, seed-dispersal, and plant-ant) in a redundancy analysis [RDA; Legendre and
Legendre (2012)] (Figure 3.1e). To help ensure differences in modularity and nestedness are not
driven by differences in sampling design and sampling effort, each modularity and nestedness metric
used in the RDA is normalized by a random matrix with an equivalent number of nodes and edges.

3.3 Methods

3.3.1 Data: Bipartite networks and climatic seasonality

A total of 723 ecological bipartite networks and their sampling locations were collected (Figure 3.2).
This dataset was made up of 298 plant-pollinator, 10 ant-plant, 277 seed-dispersal networks (total of
585 mutualistic networks), as well as 97 host-parasite, and 41 plant-herbivore networks (total of 138
antagonistic networks). Networks were obtained from open databases (e.g., www.datadryad.org and
www.web-of-life.es) and from other studies’ supplementary material (e.g., Michalska-Smith and
Allesina (2019); Fricke and Svenning (2020) [see S3.10 Appendix: Table S3.7 for literature sources
for each network]. Only networks that had at least five species in either disjoint set of species
partitions were included in our study to avoid including small networks which may otherwise bias
our analyses (Michalska-Smith and Allesina, 2019) [e.g., minimum requirement of five pollinators and

29

www.datadryad.org
www.web-of-life.es


plant species per plant-pollinator network]. Additionally, for simplicity, only the giant component of
each network was used [i.e., the largest connected component of a graph (Dale and Fortin, 2014)]
since all ecological networks used in this study are typically connected (Guimarães Jr., 2020) when
sampled correctly.

Temperature and precipitation seasonality were obtained from WorldClim (Fick and Hijmans,
2017), specifically BIO4 and BIO15, respectively. Temperature seasonality (in units of ◦C) was
defined as the standard deviation of mean monthly temperature values. Precipitation seasonality
(unitless) was defined as the coefficient of variation of monthly precipitation. Both temperature and
precipitation seasonality were measured spatially at a resolution of 2.5 arc minutes.

3.3.2 Weighted network metrics

Of the 723 bipartite networks collected, 164 plant-pollinator, 166 seed dispersal, and 68 host-parasite
networks were weighted. Networks were classified as weighted when interactions in the network had
an associated measure of interaction frequency, e.g., the number of times a pollinator pollinated a
plant.

Only weighted networks were used to evaluate the effects of seasonality on network structure in
all our linear models as they are often better descriptors of community structure than unweighted
networks (Blüthgen et al., 2007; Blüthgen, 2010; Vizentin-Bugoni et al., 2016). Each weighted
network was represented as a weighted incidence matrix, where for n rows (e.g., n plant species) and
m columns (e.g., m pollinator species), a weighted interaction was represented by a non-zero integer
value between row j and column i if and only if there existed a connection between species j and i.

3.3.2.1 Weighted modularity (∆Q)

Weighted modularity (Q) for each weighted network was quantified using the DIRT_LPA_wb_plus
function from the bipartite package (Dormann et al., 2008). This algorithm attempts to maximize
Barber’s modularity (Barber, 2007) of a given weighted network, where modules are more likely to
form when there are strong node–node interactions (Beckett, 2016). We used the weighted modularity
metric ∆Q, where ∆Q = Qempirical − Q50:V aznull, the difference between the empirical weighted
modularity of a given network (Qempirical), and the mean weighted modularity of an ensemble of
50 null models based on the empirical network

(
Q50:V aznull

)
. The ∆-transformed metric was used

to correct for the influences of sampling on empirical network properties (Dalsgaard et al., 2017).
For the null model, we chose to adopt Vaznull (Vázquez et al., 2007) which fixes network size and
weighted connectance as the empirical network.

3.3.2.2 Weighted specialization (∆H ′
2)

Weighted complementary specialization (H ′
2), hereafter referred to as weighted specialization, was

quantified for each weighted network using the H2fun function in the bipartite package. This
function uses the two-dimensional Shannon entropy to calculate the specialization of an empirical
network. In addition, H2fun normalizes empirical specialization using the maximum and minimum
entropy possible when network configuration is constrained by the same row and column totals
as the empirical network (Blüthgen et al., 2006). Hence, H ′

2 ranges from 0 to 1 indicating the
extremes of generalization and specialization, respectively. We controlled for potential sampling bias
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in specialization by using the ∆-transformed metric ∆H ′
2, where ∆H ′

2 = H ′
2,empirical−H

′
2,50:V aznull,

the difference between the empirical weighted specialization of a given network
(
H ′

2,empirical

)
, and

the mean weighted specialization of an ensemble of 50 Vaznull models based on the empirical network(
H

′
2:50,V aznull

)
.

3.3.2.3 Weighted nestedness (∆N)

Weighted nestedness (N) for each weighted network was quantified using the wnodf
function (Almeida-Neto and Ulrich, 2011) in the MBI package (Chen, 2013). This function is a
weighted extension of nodf (Almeida-Neto et al., 2008) and measures the degree to which rows and
columns show decreasing marginal totals. We controlled for potential sampling bias in nestedness
by using the ∆-transformed metric ∆N , where ∆N = Nempirical − N50:V aznull, the difference
between the empirical weighted nestedness of a given network (Nempirical), and the mean weighted
specialization of an ensemble of 50 Vaznull models based on the empirical network

(
N50:V aznull

)
.

3.3.3 Weighted network linear models

3.3.3.1 Plant-pollinator, and seed-dispersal linear mixed models (LMMs)

Linear mixed models [LMM(s)] were used to determine whether variations in the weighted measures
of modularity (∆Q), specialization (∆H ′

2), or nestedness (∆N) were explained by temperature
and precipitation seasonality. We constructed separate models for each of the three weighted
metrics. We focused on these three metrics since they are commonly used in the literature; but
we note that relationships between the metrics could also be present [e.g., Fortuna et al. (2010)]
so finding relationships with one metric is likely to indicate relationships with the others. We also
constructed LMMs for explaining normalized weighted modularity [∆Qn; eq. (S3.1)], normalized
weighted specialization

[
∆H ′

2,n; eq. (S3.2)
]
, and normalized weighted nestedness [∆Nn; eq. (S3.2)],

wherein each metric of ∆Q, ∆H ′
2, and ∆N was normalized by the standard deviation of its

corresponding metric from the 50 Vaznull models (see S3.10 Appendix: Subsection S3.10.3).
Separate sets of LMMs were constructed: one set for plant-pollinators networks and one set for

seed-dispersal networks. In each LMM, combinations of temperature and precipitation seasonality,
as well as sampling intensity [eq. (3.1)], were included as fixed effects, and publication was included
as a random effect. We included sampling intensity, interpreted as the average number of interaction
events observed per species (Schleuning et al., 2012), to control for the amount of effort used
to characterize each network and to use as a baseline measure to evaluate the degree to which
seasonality contributed to explaining variations in each network metric. Additionally, we included
publication as a random intercept to control for possible publication effects that may make networks
from the same publication more similar in structure than networks from different publications.
Networks from the same publication each formed their own group (when there were more than four
networks per one publication) while the remaining networks were aggregated into their own group.
Networks from publications with less than four networks were aggregated together as including
them as separate intercepts may cause over-fitting in the models. All LMMs were constructed using
the lme4 package (Bates et al., 2015). The proportion of variance explained by the fixed effects(
marginal R2

)
and the proportion of variance explained by both the fixed effects and random effects(

conditional R2
)

were measured using the MuMIn package (Barton, 2020).
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Sampling intensity (networki)

=

√
number of interactions in networki√

number of rows (n) in networki · number of columns (m) in networki

(3.1)

If the variation explained by the random effect of publication was greater than zero for the
weighted structural metrics of modularity, specialization, or nestedness, we deemed publication
to be important for explaining network structure and hence we continued to evaluate the
effect of seasonality using LMMs with publication as a random effect. When assessing the
random effect, we used the complete LMM that contained all fixed effects (including an
interaction between temperature and precipitation seasonality) in addition to the random effect
of publication, that is compactly written as sampling intensity + temperature seasonality ·
precipitation seasonality + (1|publication). When the random effect of publication was
important, we further investigated which fixed effects explained the variation in the corresponding
structural metrics via Akaike information criterion (AIC) (Akaike, 1973). If multiple models had
similarly low AIC values (i.e., the absolute difference between their AIC values was less than 2),
the model explaining the response variable with the lowest AIC was selected. While we acknowledge
that models differing by less than an absolute AIC value of 2 did not differ in their performance,
for simplicity, we only report the model with the lowest AIC (hereafter, “chosen”) in our main text.
Hence, while there may be multiple models that performed equally well at explaining the response
variable, as our primary objective was to assess the contributions of seasonality, we only needed to
compare one of the “best” performing models with models containing only sampling intensity. In
cases where the marginal R2 < 0.15, we did not investigate the individual contributions of each
fixed effect since we deemed these models to not provide strong evidence of a relationship between
seasonality and network structure. All analyses were conducted in R version 4.1.2 (R Core Team,
2021).

LMMs were only adopted for plant-pollinator, and seed-dispersal networks as they were the only
systems with the requisite number of publication categories [e.g., > 5 (Bolker, 2018)]. Additionally,
we constructed linear regression models (LMs) using the same combinations of fixed effects as
the LMMs and then compared the amount of variation explained by seasonality in both sets of
models. This was done to ensure that the random effect of publication was not masking the effects
of seasonality in the LMMs (see S3.10 Appendix: Subsection S3.10.4).

3.3.3.2 Plant-pollinator, seed-dispersal, and host-parasite linear regressions (LMs)

When linear mixed models were not appropriate (i.e., systems had fewer than five publication
categories or the variation explained by random effects of publication was 0), we used simple
linear models (LMs) to explain the variation in weighted modularity (∆Q,∆Qn), weighted
specialization

(
∆H ′

2,∆H ′
2,n

)
, and weighted nestedness (∆N,∆Nn). LMs were tested with all possible

combinations of terms involving sampling intensity [eq. (3.1)], temperature, and precipitation

seasonality given by the equation: sampling intensity + temperature seasonality ·
precipitation seasonality.

We also constructed LMs using only networks with higher sampling intensity values in
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their respective system to test whether networks that were more extensively sampled showed
any relationship with seasonality. To do so, we constructed LMs using only networks whose
sampling intensity values were larger than the median sampling intensity value for each ecological
system to explain variations in weighted modularity (∆Q>Samp. int.), weighted specialization(
∆H ′

2,>Samp. int.

)
, and weighted nestedness (∆N>Samp. int.). These LMs were only constructed for

plant-pollinator, and seed-dispersal networks since these ecological systems had sufficient numbers
of networks to build models with at most four explanatory variables (i.e., sampling intensity +

temperature seasonality · precipitation seasonality). We did not perform these analyses
using linear mixed models since there would not have been enough random effect groups to warrant
their use.

LM configurations of temperature seasonality, precipitation seasonality, and sampling

intensity for explaining variations in network structure were chosen using AIC values in the same
way as was done for LMMs. Specifically, when models had similarly low AIC values (i.e., the absolute
difference between their AIC values was less than 2) for explaining the response variable, the model
with the lowest AIC value was selected and presented in the main text along with a model containing
only sampling intensity as an explanatory variable.

3.3.3.3 Testing for spatial autocorrelation in models for weighted structural metrics

We tested for spatial autocorrelation, based on each network’s sampling location, in the residuals
of the chosen LMMs and LMs for weighted modularity (∆Q,∆Qn,∆Q>Samp. int.), weighted
specialization

(
∆H ′

2,∆H ′
2,n,∆H ′

2,>Samp. int.

)
, and weighted nestedness (∆N,∆Nn,∆N>Samp. int.)

using Moran’s I from the DHARMa package (Hartig, 2021). This was done to ensure that the
assumptions of the models were not violated. Since none of the models’ residuals had strong
positive autocorrelation (see S3.10 Appendix: Subsection S3.10.1), we did not include a term for
autocorrelation in any of our models.

3.3.4 Unweighted network metrics

Unweighted networks were used to evaluate the effects of seasonality on the structure of ecological
networks while controlling for differences in how antagonistic or mutualistic systems may respond
to seasonality, in a redundancy analysis. We used the modularity and nestedness metrics originally
proposed by Michalska-Smith and Allesina (2019), since they have previously been shown to capture
differences in antagonistic and mutualistic network structure when using climatic seasonality in a
principal component analysis (Song and Saavedra, 2020).

To evaluate the modularity and nestedness of unweighted networks, the two largest eigenvalues
of each network’s adjacency matrix were used, where each eigenvalue was normalized to account for
size and connectance of the networks. In theory, the first eigenvalue (λ1) is maximized in perfectly
nested networks (Staniczenko et al., 2013), while the second eigenvalue (λ2) separates from the bulk
of the eigenvalue spectrum in strongly modular networks (Newman, 2013). In our analysis, λ1 of each
network was normalized with respect to the first eigenvalues of two null models: (i) the Erdős-Rényi
(λer

1 ) random bipartite graph (Erdős and Rényi, 1959) in which the numbers of nodes and connections
were preserved, but nodes were connected at random, and (ii) a configuration model [λcm

1 ] (Bender
and Canfield, 1978; Strona et al., 2014) in which the numbers of nodes and connections were preserved
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as well as each node’s degree (i.e., number of edges per node), but connections were made at random.
As well, the λ2 of each network was normalized by the second eigenvalue of a Erdős-Rényi model,
approximated by λmp

2 ≈
[
1 +

√
m
p

]
·
√

np (1− p), where p = total number of connections
n·m , and mp stands

for Marčhenko-Pastur (Marčenko and Pastur, 1967). See Michalska-Smith and Allesina (2019)’s
supporting information for a more thorough derivation of all eigenvalue metrics.

Altogether, the three matrix algebra properties of each network evaluated were:

1− λcm
1

λ1
, (3.2)

1− λer
1

λ1
, (3.3)

1− λmp
2

λ2
. (3.4)

Since these modularity and nestedness metrics have only been rigorously tested using unweighted
networks, we converted our weighted networks into unweighted networks for this analysis.

3.3.4.1 Redundancy analysis with unweighted networks

We used redundancy analysis (RDA) to evaluate whether temperature and/or precipitation
seasonality explained the variation in modularity and nestedness for unweighted networks while also
controlling for antagonistic and mutualistic network types. In the RDA, we included modularity and
nestedness as the response variables [specified by eqs. (3.2)–(3.4)]. Temperature seasonality and
precipitation seasonality as well as a binary variable to identify networks as either antagonistic
or mutualistic were included as explanatory variables.

3.4 Results

3.4.1 Weighted network linear models

3.4.1.1 Plant-pollinator, and seed-dispersal linear mixed models (LMMs)

For plant-pollinator networks, the complete configuration linear mixed model (LMM) with
all the fixed effects of sampling intensity (Samp.int.), temperature seasonality (Temp.)
and precipitation seasonality (Precip.) (i.e., Samp.int.+ Temp. · Precip.) only minimally
contributed to explaining variations in weighted modularity (∆Q) and weighted specialization
[∆H ′

2] (marginal R2 = 0.055 and 0.116, respectively; Table 3.2). In both cases, the random effect
of publication (which consisted of 6 categories) contributed to explaining most of the accounted
variation (conditional R2 ≈ 0.33). For weighted nestedness (∆N), since the random effect of
publication did not contribute to explaining network structure, we explored seasonality’s influence on
∆N in plant-pollinator networks using LMs (see Subsubsection 3.4.1.2). When testing the normalized
versions of our metrics, the chosen model for normalized weighted nestedness (∆Nn) only explained
about 16% of the variation using the fixed effect of Temp. (S3.10 Appendix: Table S3.3). We did
not investigate models to explain the variation in normalized weighted modularity (∆Qn), or in
normalized weighted specialization

(
∆H ′

2,n

)
since residuals violated model assumptions.

For seed-dispersal networks, the complete configuration LMM with all the
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fixed effects of temperature seasonality, precipitation seasonality (and their
interaction), and sampling intensity only explained a minimal amount of the
variation for weighted modularity

(
∆Q;marginal R2 = 0.082

)
and weighted nestedness[

∆N ;marginal R2 = 0.051
]

(Table 3.2). For both weighted modularity and weighted nestedness, the
random effect of publication (which consisted of 9 categories) contributed most to explaining
the accounted variation of both metrics

(
conditional R2 = 0.232 and 0.293, respectively

)
.

In the case of weighted specialization (∆H ′
2), the chosen model moderately explained

the variation in ∆H ′
2 but contained only sampling intensity as a fixed effect(

marginal R2 = 0.279, conditional R2 = 0.357; Table 3.2 and S3.10 Appendix: Table S3.1
)
.

Regarding the normalized metrics, we only explored seasonality’s influence on normalized
structural metrics using LMs (Subsubsection 3.4.1.2) as the inclusion of random effects did not
improve the models.

3.4.1.2 Plant-pollinator, seed-dispersal, and host-parasite linear models (LMs)

As the marginal and condition R2 were equal for weighted nestedness (∆N) in plant-pollinator
linear mixed models, linear models (LMs) were instead adopted to evaluate the relationship between
temperature seasonality and precipitation seasonality with ∆N . The chosen model (i.e., the model
with the lowest AIC) for ∆N included sampling intensity, temperature seasonality, and
precipitation seasonality (i.e., Samp.int.+Temp.+Precip., R2

adj = 0.206, Table 3.3 and S3.10
Appendix: Table S3.2). While this LM contained both seasonality variables as explanatory variables,
sampling intensity contributed most as a model with only sampling intensity explained more than
half—about 12%—of the variation in ∆N

(
i.e., R2

adj = 0.117
)
.

For the normalized metrics of seed-dispersal networks, only LMs for normalized weighted
nestedness (∆Nn) were explored as model assumptions were violated when explaining
both normalized weighted modularity (∆Qn), and normalized weighted specialization(
∆H ′

2,n

)
. We found that seasonality only weakly explained the variation in ∆Nn(

R2
adj = 0.044; S3.10 Appendix: Table S3.4

)
, as the chosen LM included sampling intensity and

temperature seasonality as explanatory variables (i.e., Samp.int.+Temp.).
Altogether for host-parasite networks, we found no strong relationships to

suggest that seasonality explained any weighted structural metrics (Table 3.3
and S3.10 Appendix: Table S3.2). Specifically, the chosen models for both weighted
specialization (∆H ′

2) and weighted nestedness (∆N) only included sampling

intensity as an explanatory variable
(
R2

adj = 0.144, and R2
adj = 0.467, respectively

)
.

While the chosen model for weighted modularity (∆Q) was the complete model of
Samp.int. + Temp. · Precip.

(
R2

adj = 0.175; S3.10 Appendix: Table S3.2 and Figure 3.3
)
,

the total amount of variation explained by seasonality was low as a model
with the seasonality terms only explained a small amount of variation in ∆Q(
i.e., Temp. · Precip., R2

adj = 0.136, S3.10 Appendix: Table S3.2
)
. Additionally, since model

assumptions for both normalized weighted modularity (∆Qn), and normalized weighted
specialization

(
∆H ′

2,n

)
violated model assumptions, we only explored LMs for normalized

weighted nestedness (∆Nn) in host-parasite networks (S3.10 Appendix: Table S3.4). Although we
found that the chosen model for normalized weighted nestedness (∆Nn) included both sampling

intensity and precipitation seasonality as explanatory variables
(
R2

adj = 0.619
)
, most of the
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variation explained was via sampling intensity since a model with only sampling intensity had
an R2

adj of 0.572.

3.4.1.3 Higher sampling intensity networks: Plant-pollinator and seed-dispersal linear
models (LMs)

When limiting our LM analyses to networks whose sampling intensity was greater than the median
sampling intensity for their respective systems, we found moderate relationships with seasonality
for two weighted metrics in plant-pollinator networks but none in seed-dispersal networks (S3.10
Appendix: Table S3.6). Specifically, for plant-pollinator networks, the chosen model for explaining
the variation in weighted modularity (∆Q>Samp. int.) included sampling intensity, temperature,
and precipitation seasonality

(
i.e., Samp.int.+ Temp. · Precip., R2

adj = 0.323
)
, while the

chosen model for explaining the variation in weighted specialization
(
∆H ′

2,>Samp. int.

)
was

Temp. · Precip.
(
R2

adj = 0.326
)
. Yet, when explaining the variation in weighted nestedness

(∆N>Samp. int.) in plant-pollinator networks, we found a much weaker relationship with
seasonality

(
R2

adj = 0.146
)

as the chosen model included only temperature seasonality as an
explanatory variable. Conversely for seed-dispersal networks, the only noteworthy relationships
we found

(
i.e., R2

adj > 0.15
)

to suggest that seasonality explained any of the three network

metrics were the models for weighted specialization
(
∆H ′

2,>Samp. int.

)
wherein the chosen model

contained all explanatory variables
(
i.e., Samp.int.+ Temp. · Precip., R2

adj = 0.246
)
. However,

most of the variation in ∆H ′
2,>Samp. int. was explained by sampling intensity alone as

a model with only sampling intensity had a moderate relationship with ∆H ′
2,>Samp. int.(

R2
adj = 0.199; S3.10 Appendix: Table S3.6

)
.

3.4.2 Redundancy analysis with unweighted networks

We found only very weak relationships between seasonality and the unweighted network metrics
for nestedness and modularity when controlling for antagonistic and mutualistic systems using
RDA. Specifically, temperature seasonality and precipitation seasonality, and network

type (i.e., antagonistic/mutualistic) only explained about 5%
(
R2

adj = 0.052
)

of the total variation
in unweighted nestedness [eqs. (3.2) and (3.3)] and unweighted modularity [eq. (3.4)] metrics. When
projecting these results in an RDA triplot (Figure 3.4), antagonistic and mutualistic systems did
not show evidence of having different structures as they overlapped in RDA space.

3.5 Discussion

The representation and analyses of ecological communities using networks have increased
dramatically over the last few decades (Poisot et al., 2016b; Tylianakis and Morris, 2017; Delmas
et al., 2019; Fortin et al., 2021). Despite the growing number of ecological networks and statistical
tests available, how climate and environmental conditions contribute to detectable differences in
network structure is still heavily debated (Pellissier et al., 2018; Poisot et al., 2021; Brimacombe
et al., 2022a). In our large-scale analyses using the largest open dataset of bipartite networks
yet compiled, we find (1) only weak evidence that temperature and/or precipitation seasonality
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explains the variation in the weighted metrics of modularity, specialization, or nestedness in plant-
pollinator, seed-dispersal, or host-parasite systems and (2) that precipitation and/or temperature
seasonality does not explain unweighted metrics of nestedness or modularity even when controlling
for antagonistic (host-parasite, and plant-herbivore) or mutualistic (plant-pollinator, seed-dispersal,
and plant-ant) network types.

Generally, in cases where seasonality contributed to explaining some of the variations in
unweighted and weighted structural metrics, the contributions were always small. Specifically,
seasonality explained at most only about 16% of the total variation in weighted network metrics [i.e.,
normalized weighted nestedness (∆Nn) for plant-pollinator networks (S3.10 Appendix: Table S3.3)]
and about 5% of unweighted metrics (RDA; Figure 3.4). Importantly, the results for the unweighted
metrics also indicate that there are no structural differences between mutualistic and antagonistic
networks since both overlap in RDA space, contrasting the findings of Song and Saavedra (2020).

The prominence of sampling intensity rather than temperature and/or precipitation seasonality
throughout our analyses highlights how non-biological factors can influence the representation
of ecological communities as networks. Nevertheless, beyond the variation captured by sampling
intensity, other study design differences including the unique sampling strategies and unique
construction methodologies that each publication adopted to create available open networks likely
confound and contribute to our findings that there exist only weak relationships between network
structure and seasonality. For example, previous studies have already found that the amount of
time used to characterize an ecological community (Schwarz et al., 2020; CaraDonna et al., 2021),
and the amount of area used when sampling in situ (Galiana et al., 2018) can influence network
structure, and that the taxon resolution of nodes determined during network construction can
contribute to large fluctuations in network metrics (Hemprich-Bennett et al., 2021). It is thus
likely difficult to compare open species interaction networks (Salim et al., 2022) since each network
may be structurally distinct due to the unique (a)biotic conditions each community experiences,
the unique construction method used to create each network, and the unique sampling protocols
adopted to characterize each ecological system as a network. Hence, study design differences
are especially important to consider when using open networks as they can vary substantially
between each publication that provides these networks. Although we acknowledge that we did find
moderate relationships

(
i.e., R2

adj ≈ 0.325
)

of seasonality with weighted modularity and weighted
specialization, this occurred only with plant-pollinator networks when three or more variables were
included, and only when we limited our analyses to networks with the highest sampling intensity
(S3.10 Appendix: Table S3.6).

Most studies that attempt to measure network structure on a global scale use open networks that
have been sampled and constructed via different methodologies. Given the structural differences that
can arise due to differences in sampling and construction methodologies, we advocate, as did Jordano
(2016), for a consistent and rigorous protocol for reporting ecological network structure, particularly
when measuring changes across large spatial extents. While not an exhaustive list, we recommend
that this protocol includes consistency in: (i) the ways interactions are recorded, (ii) the time and
area allotted for observing interactions, and (iii) the node resolution in networks. Such a protocol
would help ensure measurement commensurability between networks, resulting in a definitive test of
the relationship between structure and climatic gradients (Gravel et al., 2019). Until proper protocols
have been adopted, we recommend exercising caution when using networks from multiple sources
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since the amount of time, area, effort, and node resolution used to characterize a community can
vary greatly.

Beyond network heterogeneities that may arise due to differences in study design and
methodologies, inherent biological properties may beget a lack of biological commensurability,
creating even greater challenges when comparing networks. For example, given success for
disentangling how traits influence pairwise species interactions, e.g., Dalsgaard et al. (2021), it may
then be difficult to compare systems made up of very different species. While some traits may be
generalizable across organisms like body size, finding other common traits that govern different
organisms, for example, both insect and hummingbird interactions within plant-pollinator networks,
may not be easy. Moreover, the life stage resolution of nodes can contribute to significant differences
in network structure (Clegg et al., 2018; Bodner et al., 2022). For example, separate nodes are likely
required to represent different life stages of species for those in which life stages act and behave
entirely different from one another, e.g., tadpole and frog, resulting in even greater difficulties when
comparing with networks without such variations between ontogenetic stages.

3.6 Conclusion

Despite accumulated network data, it is unknown if and how ecological systems show detectable
patterns in network structure across seasonal climatic gradients. Here, using a collection of open
bipartite networks, we find no strong evidence that there exists a relationship between network
structure and temperature and/or precipitation seasonality across large spatial extents, even when
controlling for whether networks were antagonistic or mutualistic. Instead, we find much of the
variation in network structure is better explained by the sampling intensity used to characterize
each network. Hence, a definitive test for the relationship between network structure and seasonality
across large spatial extents likely requires a dataset that is free from sampling bias, and networks
whose communities are characterized using a consistent sampling protocol. Such a protocol would
help ensure measurement commensurability between networks, resulting in a definitive test for the
relationship between network structure and climatic gradients. However, given the large amounts
of structural differences in currently available networks that likely result from sampling design
differences, it is unlikely that such meaningful relationships with seasonal climatic variability exist
within the network data.

3.7 Data and code availability

All data and code to reproduce our results are available at: www.osf.io/h2m7j/.
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3.8 Figures

Figure 3.1. Left: Illustration of specialization, modularity, and nestedness in connected weighted
plant-pollinator systems, where white boxes indicate a lack of pairwise species interaction, and
yellow numbered boxes indicate a weighted interaction between plant (columns) and pollinator
(rows) species. Right: First, as shown in (d) we test the relationships between temperature and
precipitation seasonality with the weighted network metrics of specialization (a), modularity (b), and
(c) nestedness in plant-pollinator, seed-dispersal, and host-parasite networks. Second, as illustrated
in (e) we test the relationship between seasonality and unweighted network metrics using a
redundancy analysis (RDA). Specifically, we attempt to explain normalized measures of nestedness
(1−λcm

1 /λ1, 1−λer
1 /λ1) and modularity (1−λmp

2 /λ2) using precipitation and temperature seasonality,
while controlling for whether networks were antagonistic (plant-herbivore, and host-parasite) or
mutualistic (plant-pollinator, seed-dispersal, and plant-ant).
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Figure 3.2. The location of the empirical bipartite networks (n = 723) used in this study, and
their corresponding temperature seasonality (◦C) from Fick and Hijmans (2017) where blue symbols
indicate mutualistic networks (plant-pollinator, seed-dispersal, and plant-ant) and orange symbols
indicate antagonistic networks (plant-herbivore, and host-parasite).
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Figure 3.3. Added variable plot for the chosen linear model explaining the variation
in weighted modularity (∆Q) using the explanatory variables sampling intensity +
temperature seasonality · precipitation seasonality (R2

adj = 0.178) for host-parasite (n =
67) networks. A single outlier was removed from the analyses presented here, but see S3.10 Appendix:
Figure S3.19 for the linear model with all (n = 68) networks. Each panel represents the relationship
between ∆Q and each explanatory variable in the model while controlling for all other variables.
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Figure 3.4. Redundancy analysis (RDA) distance triplot explaining metrics of unweighted
nestedness (1− λcm

1 /λ1, 1− λer
1 /λ1) and unweighted modularity (1− λmp

2 /λ2) using precipitation
seasonality (Precip.) and temperature seasonality (Temp.) while controlling for whether
networks are classified as antagonistic (Type A—plant-pollinator, plant-ant, and seed-dispersal;
orange circles) or mutualistic (Type M—plant-herbivore, and host-parasite; green circles). Panel
(B) is a closer perspective of panel (A). Points are clustered together in the plots since Temp.,
Precip., and network type only weakly explain the variation in the unweighted nestedness and
modularity metrics (R2

adj = 0.052).
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Table 3.2. Linear mixed models (LMMs) for explaining the variation in weighted modularity (∆Q),
weighted specialization (∆H ′

2), and weighted nestedness (∆N). Marginal R2 is the proportion of
variation explained by the fixed effects, and conditional R2 is the proportion of variation explained
by both the fixed and random effects. Publication, a factor variable that grouped networks from
the same publication, was included as a random intercept in all models. Precipitation seasonality
(Precip.), temperature seasonality (Temp.), and log-transformed sampling intensity (Samp.int.)
were included as fixed effects. If the marginal R2 < 0.15, we did not investigate which combinations
of fixed effects were chosen. See S3.10 Appendix: Table S3.1 for the associated models that were
tested when evaluating which fixed effects were to be chosen. When marginal and conditional R2

are equal (indicating that the random effect did not contribute to explaining the variation), model
explorations were performed with linear models (Table 3.3).

Network
type

Dependent
variable Fixed effect(s) Marginal R2 Conditional R2

Plant-pollinator
(n = 164)

∆Q Samp.int.+ Temp.· Precip. 0.055 0.332
∆H ′

2 Samp.int.+ Temp.· Precip. 0.116 0.323
∆N Samp.int.+ Temp.· Precip. 0.218 0.218

Seed-dispersal
(n = 166)

∆Q Samp.int.+ Temp.· Precip. 0.082 0.232

∆H ′
2

Samp.int.+ Temp.· Precip. 0.293 0.377
Samp.int. 0.279 0.357

∆N Samp.int.+ Temp.· Precip. 0.051 0.293
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S3.10 Appendix

S3.10.1 Tests for spatial auto-correlation

Tests for positive autocorrelation using global Moran’s I of the scaled residuals for each
chosen model that explains the variation in network metrics [i.e., weighted modularity (∆Q),
weighted specialization (∆H ′

2), weighted nestedness (∆N), normalized weighted nestedness (∆Nn),
weighted modularity for networks whose sampling intensity is greater than the median sampling
intensity of their respective system (∆Q>Samp. int.), weighted specialization for networks whose
sampling intensity is greater than the median sampling intensity of their respective system(
∆H ′

2,>Samp. int.

)
, weighted nestedness for networks whose sampling intensity is greater than the

median sampling intensity of their respective system (∆N>Samp. int.)] in each system (i.e., host-
parasite, plant-pollinator, and seed-dispersal). Autocorrelation tests were performed using the
DHARMa package (Hartig, 2021) in R (R Core Team, 2021). In cases where multiple networks
occurred at the same location, scaled residuals were recalculated using the simulateResiduals
function.

All residuals were calculated via a simulation approach (similar to the Bayesian p-value or the
parametric bootstrap). Simulated residuals were scaled between 0 and 1, where a value of 0 indicated
that all simulated residuals were larger than the observed value, and 1 indicated that no residuals
were larger than the observed value.

In three out of the eighteen models, we did find statistically significant positive autocorrelation
[global Moran’s I, (see autocorrelation.R to rerun all analyses)] but the autocorrelations were
weak. Specifically, the weak but statistically significant autocorrelations occurred in a single plant-
pollinator network model (Figure S3.3—global Moran’s I for ∆N = 0.208) as well as in two seed-
dispersal network models (Figure S3.8—global Moran’s I for ∆Q = 0.133 and Figure S3.9—global
Moran’s I for ∆H ′

2 = 0.095). Hence, there was no strong evidence of positive autocorrelation in the
scaled residuals of our models for weighted modularity (∆Q,∆Q>Samp. int.), weighted specialization(
∆H ′

2,∆H ′
2,>Samp. int.

)
, or weighted nestedness (∆N,∆Nn,∆N>Samp. int.).
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S3.10.1.1 Global Moran’s I for plant-pollinator networks
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Figure S3.1. Global Moran’s I (observed = 0.096, p-value = 0.125) using the scaled residuals
(between 0 and 1) from the chosen linear mixed model (i.e., the model with the lowest AIC)
explaining the variation in weighted modularity (∆Q) using the fixed effects of sampling intensity,
temperature seasonality, and precipitation seasonality (Samp.int.+ Temp. · Precip.) and
the random effect of publication for (n = 62) plant-pollinator networks. Location of coloured rings
on map correspond to network locations, where colour corresponds to the value of the scaled residual
for the location’s network(s).
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Figure S3.2. Global Moran’s I (observed = 0.127, p-value = 0.070) using the scaled
residuals (between 0 and 1) from the chosen linear mixed model (i.e., the model with
the lowest AIC) explaining the variation in weighted specialization (∆H ′

2) using the fixed
effects of sampling intensity, temperature seasonality, and precipitation seasonality
(Samp.int.+ Temp. · Precip.) and the random effect of publication for (n = 62) plant-pollinator
networks. Location of coloured rings on map correspond to network locations, where colour
corresponds to the value of the scaled residual for the location’s network(s).
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Figure S3.3. Global Moran’s I (observed = 0.208, p-value = 0.010) using the scaled residuals
(between 0 and 1) from the chosen linear model (i.e., the model with the lowest AIC) explaining the
variation in weighted nestedness (∆N) using sampling intensity, and temperature seasonality
(Samp.int.+ Temp.) for (n = 62) plant-pollinator networks. Location of coloured rings on map
correspond to network locations, where colour corresponds to the value of the scaled residual for the
location’s network(s).
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Figure S3.4. Global Moran’s I (observed = −0.034, p-value = 0.573) using the scaled residuals
(between 0 and 1) from the chosen linear mixed model (i.e., the model with the lowest AIC)
explaining the variation in normalized weighted nestedness (∆Nn) using the fixed effect of
temperature seasonality and the random effect of publication for (n = 62) plant-pollinator
networks. Location of coloured rings on map correspond to network locations, where colour
corresponds to the value of the scaled residual for the location’s network(s).
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Figure S3.5. Global Moran’s I (observed = −0.010, p-value = 0.424) using the scaled residuals
(between 0 and 1) from the chosen linear model (i.e., the model with the lowest AIC) explaining
the variation in weighted modularity (∆Q>Samp. int.) using sampling intensity, temperature
seasonality, and precipitation seasonality (Samp.int.+ Temp. · Precip.) for (n = 25) plant-
pollinator networks whose sampling intensity is greater than the median sampling intensity of all
plant-pollinator. Location of coloured rings on map correspond to network locations, where colour
corresponds to the value of the scaled residual for the location’s network(s).
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Figure S3.6. Global Moran’s I (observed = 0.100, p-value = 0.195) using the scaled residuals
(between 0 and 1) from the chosen linear model (i.e., the model with the lowest AIC) explaining
the variation in weighted specialization

(
∆H ′

2,>Samp. int.

)
using temperature seasonality, and

precipitation seasonality (Temp.+ Precip.) for (n = 25) plant-pollinator networks whose
sampling intensity is greater than the median sampling intensity of all plant-pollinator networks.
Location of coloured rings on map correspond to network locations, where colour corresponds to the
value of the scaled residual for the location’s network(s).
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Figure S3.7. Global Moran’s I (observed = −0.037, p-value = 0.488) using the scaled residuals
(between 0 and 1) from the chosen linear model (i.e., the model with the lowest AIC) explaining
the variation in weighted nestedness (∆N>Samp. int.) using temperature seasonality for (n = 25)
plant-pollinator networks whose sampling intensity is greater than the median sampling intensity of
all plant-pollinator networks. Location of coloured rings on map correspond to network locations,
where colour corresponds to the value of the scaled residual for the location’s network(s).
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S3.10.1.2 Global Moran’s I for seed-dispersal networks
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Figure S3.8. Global Moran’s I (observed = 0.133, p-value = 0.002) using the scaled residuals
(between 0 and 1) from the chosen linear mixed model (i.e., the model with the lowest AIC)
explaining the variation in weighted modularity (∆Q) using the fixed effects of sampling intensity,
temperature seasonality, and precipitation seasonality (Samp.int.+ Temp. · Precip.) and
the random effect of publication for (n = 132) seed-dispersal networks. Location of the coloured
rings on map correspond to network locations, where colour corresponds to the value of the scaled
residual for the location’s network(s).

54



−50

0

50

−100 0 100 200
Longitude

La
tit

ud
e

Scaled residuals
1

0

0.5

Figure S3.9. Global Moran’s I (observed = 0.095, p-value = 0.018) using the scaled residuals
(between 0 and 1) from the chosen linear mixed model (i.e., the model with the lowest AIC)
explaining the variation in weighted specialization (∆H ′

2) using the fixed effect of sampling
intensity and the random effect of publication for (n = 132) seed-dispersal networks. Location
of coloured rings on map correspond to network locations, where colour corresponds to the value of
the scaled residual for the location’s network(s).
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Figure S3.10. Global Moran’s I (observed = 0.040, p-value = 0.164) using the scaled residuals
(between 0 and 1) from the chosen linear mixed model (i.e., the model with the lowest AIC)
explaining the variation in weighted nestedness (∆N) using the fixed effects of sampling intensity,
temperature seasonality, and precipitation seasonality (Samp.int.+ Temp. · Precip.) and
the random effect of publication for (n = 132) seed-dispersal networks. Location of coloured rings on
map correspond to network locations, where colour corresponds to the value of the scaled residual
for the location’s network(s).
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Figure S3.11. Global Moran’s I (observed = 0.045, p-value = 0.141) using the scaled residuals
(between 0 and 1) from the chosen linear model (i.e., the model with the lowest AIC) explaining the
variation in normalized weighted nestedness (∆Nn) using sampling intensity, and temperature
seasonality (Samp.int.+ Temp.) for (n = 132) seed-dispersal networks. Location of coloured rings
on map correspond to network locations, where colour corresponds to the value of the scaled residual
for the location’s network(s).
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Figure S3.12. Global Moran’s I (observed = −0.009, p-value = 0.465) using the scaled residuals
(between 0 and 1) from the chosen linear model (i.e., the model with the lowest AIC) explaining
the variation in weighted modularity (∆Q>Samp. int.) using temperature seasonality for (n = 68)
seed-dispersal networks whose sampling intensity is greater than the median sampling intensity of all
seed-dispersal networks. Location of coloured rings on map correspond to network locations, where
colour corresponds to the value of the scaled residual for the location’s network(s).
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Figure S3.13. Global Moran’s I (observed = 0.014, p-value = 0.334) using the scaled residuals
(between 0 and 1) from the chosen linear model (i.e., the model with the lowest AIC) explaining the
variation in weighted specialization

(
∆H ′

2,>Samp. int.

)
using sampling intensity, and temperature

seasonality (Samp.int.+ Temp.) for (n = 68) seed-dispersal networks whose sampling intensity is
greater than the median sampling intensity of all seed-dispersal networks. Location of the coloured
rings on map correspond to network locations, where colour corresponds to the value of the scaled
residual for the location’s network(s).
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Figure S3.14. Global Moran’s I (observed = −0.021, p-value = 0.537) using the scaled residuals
(between 0 and 1) from the chosen linear model (i.e., the model with the lowest AIC) explaining
the variation in weighted nestedness (∆N>Samp. int.) using temperature seasonality for (n = 68)
seed-dispersal networks whose sampling intensity is greater than the median sampling intensity of
all seed-dispersal networks. Location of the coloured rings on map correspond to network locations,
where colour corresponds to the value of the scaled residual for the location’s network(s).
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S3.10.1.3 Global Moran’s I for host-parasite networks
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Figure S3.15. Global Moran’s I (observed = 0.081; p-value = 0.129) using the scaled residuals
(between 0 and 1) from the chosen linear model (i.e., the model with the lowest AIC)
explaining the variation in weighted modularity (∆Q) using sampling intensity, temperature
seasonality, and precipitation seasonality (Samp.int.+ Temp. · Precip.) for (n = 68) host-
parasite networks. Location of coloured rings on map correspond to network locations, where colour
corresponds to the value of the scaled residual for the location’s network(s).
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Figure S3.16. Global Moran’s I (observed = 0.120, p-value = 0.055) using the scaled residuals
(between 0 and 1) from the chosen linear model (i.e., the model with the lowest AIC) explaining
the variation in weighted specialization (∆H ′

2) using sampling intensity for (n = 68) host-
parasite networks. Location of coloured rings on map correspond to network locations, where colour
corresponds to the value of the scaled residual for the location’s network(s).
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Figure S3.17. Global Moran’s I (observed = 0.067, p-value = 0.168) using the scaled residuals
(between 0 and 1) from the chosen linear model (i.e., the model with the lowest AIC) explaining
the variation in weighted nestedness (∆N) using sampling intensity for (n = 68) host-parasite
networks. Location of coloured rings on map correspond to network locations, where colour
corresponds to the value of the scaled residual for the location’s network(s).
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Figure S3.18. Global Moran’s I (observed = 0.041, p-value = 0.253) using the scaled residuals
(between 0 and 1) from the chosen linear model (i.e., the model with the lowest AIC) explaining the
variation in normalized weighted nestedness (∆Nn) using sampling intensity, and precipitation
seasonality (Samp.int.+Precip.) for (n = 68) host-parasite networks. Location of coloured rings
on map correspond to network locations, where colour corresponds to the value of the scaled residual
for the location’s network(s).
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S3.10.2 Extension of Table 3.2, Table 3.3, and Figure 3.3

Table S3.1. Extension from Table 3.2 of linear mixed models (LMMs) for explaining the variation
in weighted specialization (∆H ′

2). Marginal R2 is the proportion of variation explained by the
fixed effects, conditional R2 is the proportion of variation explained by both the fixed and random
effects, and ∆AIC is the difference between the AIC of a given model and the model with lowest
AIC value. Publication, a factor variable that grouped networks from the same publication, was
included as a random intercept in all models. Precipitation seasonality (Precip.), temperature
seasonality (Temp.), and log-transformed sampling intensity (Samp.int.) were included as
fixed effects.

Network
type

Dependent
variable Fixed effect(s) Marginal

R2
Conditional

R2 ∆AIC

Seed-dispersal
(n = 166)

∆H ′
2

Samp.int. 0.279 0.357 0.00
Samp.int.+Precip. 0.283 0.372 0.68
Samp.int.+Temp. · Precip. 0.293 0.377 1.65
Samp.int.+Temp. 0.279 0.356 1.92
Samp.int.+Temp.+Precip. 0.280 0.374 2.67
Temp. · Precip. 0.094 0.193 44.77
Temp.+Precip. 0.081 0.192 45.18
Temp. 0.063 0.157 46.77
Precip. 0.036 0.252 48.37
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Figure S3.19. Added variable plot for the chosen linear model (without outlier removed,
see Figure 3.3 with outlier removed) explaining the variation in weighted modularity
(∆Q) using the explanatory variables sampling intensity + temperature seasonality ·
precipitation seasonality

(
R2

adj = 0.175
)

for host-parasite (n = 68) networks. Each panel
represents the relationship between ∆Q and each explanatory variable in the model while controlling
for all other variables in the model.
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S3.10.3 Linear mixed models and linear regression models for explaining
normalized weighted metrics ∆Qn, ∆H ′

2,n, and ∆Nn

To verify whether our conclusions that there exists no strong evidence for relationships between
seasonality (i.e., temperature and precipitation variability) and weighted network metrics still
held when using normalized metrics, we reran our analyses using normalized weighted modularity
[∆Qn; eq. (S3.1)], normalized weighted specialization

[
∆H ′

2,n; eq. (S3.2)
]
, and normalized weighted

nestedness [∆Nn; eq. (S3.3)] for plant-pollinator, seed-dispersal, and host-parasite networks.
In plant-pollinator networks, we attempted to construct linear mixed models for normalized

weighted metrics, but the residuals violated the assumption of homoscedasticity except when
explaining the variation in normalized weighted nestedness (∆Nn). In this case, the chosen linear
mixed model for ∆Nn (i.e., had lowest AIC) contained only temperature seasonality as a fixed
effect with publication as a random effect, and had a marginal R2 of 0.156 and a condition R2 of
0.253 (Table S3.3).

In seed-dispersal networks, since the random effect of publication rarely contributed to explaining
the variation in normalized weighted metrics of ∆Qn, ∆H ′

2,n, and ∆Nn, we instead only constructed
linear models. Moreover, we only report the results for ∆Nn (Table S3.4) since assumptions were
violated when attempting to explain ∆Qn and ∆H ′

2,n. Altogether, we found that our models for

explaining the variation in ∆Nn for seed-dispersal networks had low adjusted R2
(
R2

adj ≤ 0.046
)
.

Like the analyses in the main manuscript, we only constructed linear models for host-parasite
networks when explaining normalized weighted metrics since the host-parasite system did not have
the requisite number of publication categories (e.g., > 5) to warrant the construction of linear
mixed models. We also only report the results for ∆Nn (Table S3.4) since the assumptions of linear
regression were violated when attempting to explain the variation in ∆Qn and ∆H ′

2,n. We found
that the chosen model for ∆Nn in host-parasite networks had an R2

adj of 0.619 and included both
sampling intensity and precipitation seasonality as explanatory variables. However, a model
that only included sampling intensity as an explanatory variable for ∆Nn had an R2

adj of 0.572
meaning that the inclusion of precipitation seasonality only minimally improved the model by
about 5

Given that the best evidence for explaining any normalized weighted metrics using seasonality
was from plant-pollinator networks where the variation in normalized weighted nestedness (∆Nn)

was only weakly explained by temperature seasonality
(
conditional R2 = 0.156

)
, we re-confirm

our hypothesis that there is no strong evidence that seasonality explains network metrics.
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∆Qn =
Qempirical −Q50:V aznull

σQ50:V aznull

, (S3.1)

where Qempirical is the empirical weighted modularity of a given network as evaluated using the
DIRT_LPA_wb_plus function from the bipartite package (Dormann et al., 2008), Q50:V aznull is
the mean weighted modularity of an ensemble of 50 Vaznull models based on the empirical network,
and σQ50:V aznull

is the standard deviation of weighted modularity from the 50 Vaznull models.

∆H ′
2,n =

H ′
2,empirical −H

′
2,50:V aznull

σH′
2,50:V aznull

, (S3.2)

where H ′
2,empirical is the empirical weighted specialization of a given network as evaluated using

the H2fun function in the bipartite package, H
′
2,50:V aznull is the mean weighted specialization of an

ensemble of 50 Vaznull models based on the empirical network, and σH′
2,50:V aznull

is the standard
deviation of weighted specialization from the 50 Vaznull models.

∆Nn =
Nempirical −N50:V aznull

σN50:V aznull

, (S3.3)

where Nempirical is the empirical weighted nestedness of a given network as evaluated using the
wnodf function (Almeida-Neto and Ulrich, 2011) in the MBI package (Chen, 2013), N50:V aznull is
the mean weighted nestedness of an ensemble of 50 Vaznull models based on the empirical network,
and σN50:V aznull

is the standard deviation of weighted nestedness from the 50 Vaznull models.
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Table S3.3. Linear mixed models (LMMs) for explaining the variation in normalized weighted
nestedness (∆Nn). Marginal R2 is the proportion of variation explained by the fixed effects,
conditional R2 is the proportion of variation explained by both the fixed and random effects,
and ∆AIC is the difference between the AIC of a given model and the model with lowest
AIC value. Publication, a factor variable that grouped networks from the same publication, was
included as a random intercept in all models. Precipitation seasonality (Precip.), temperature
seasonality (Temp.), and log-transformed sampling intensity (Samp.int.) were included as
fixed effects.

Network
type

Dependent
variable Fixed effect(s) Marginal

R2
Conditional

R2 ∆AIC

Plant-
pollinator
(n = 164)

∆Nn

Temp. 0.156 0.253 0.00
Samp.int.+Temp. 0.175 0.284 1.50
Temp.+Precip. 0.168 0.290 1.66
Samp.int.+Temp.+Precip. 0.196 0.340 3.16
Temp. · Precip. 0.178 0.314 3.34
Samp.int.+Temp. · Precip. 0.202 0.355 4.94
Precip. 0.055 0.220 9.57
Samp.int.+Precip. 0.053 0.218 11.52
Samp.int. 0.001 0.158 13.88
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S3.10.4 Linear regressions alternatives to the linear mixed models used
in the manuscript (i.e., Table 3.2)

It is possible that the linear mixed models with publication as a random intercept removed
the importance of seasonality (i.e., temperature, and precipitation variability) for explaining the
variation in weighted modularity (∆Q), weighted specialization (∆H ′

2), and weighted nestedness
(∆N) in plant-pollinator, and seed-dispersal networks shown in Table 3.2. To overcome this
issue, we revaluated these relationships by instead using linear models (LMs; Table S3.5). We
reconfirm our conclusion that there is no strong evidence for which seasonality appears to explain
network structure. More specifically, the best evidence that seasonality explains the variation in
network structure using LMs is the plant-pollinator network’s chosen model for weighted nestedness
(∆N) which included sampling intensity (Samp.int.), temperature seasonality (Temp.),
and precipitation seasonality (Precip.) as explanatory variables

(
R2

adj = 0.206
)
. However,

temperature seasonality, and precipitation seasonality only contributed about 10% to this
(i.e., a model of only temperature seasonality, and precipitation seasonality for explaining
the variation in ∆N had R2

adj = 0.102).
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Chapter 4

How network size strongly determines
trophic specialization: A technical
comment on Luna et al. (2022)

A version of this chapter has been published as: Brimacombe C., K. Bodner, and M.-J. Fortin. How
network size strongly determines trophic specialization: A technical comment on Luna et al. (2022).
Ecology Letters, 2022, 25:1914–1916.

4.1 Abstract

Luna et al. (2022) concluded that the environment contributes to explaining specialization in open
plant-pollinator networks. When reproducing their study, we instead found that network size alone
largely explained the variation in their specialization metrics. Thus, we question whether empirical
network specialization is driven by the environment.

4.2 Introduction

Recently, there has been a concerted initiative to determine if and how network specialization is
explained by the environment, e.g., Dalsgaard et al. (2011); Schleuning et al. (2012); Dalsgaard
et al. (2017). Much of this research stems from the venerable proposition that species are more
specialized in the tropics, which may arise from the greater number of species requiring resources
to be more finely divided (Janzen, 1973; MacArthur, 1984; Moles and Ollerton, 2016). Nevertheless,
the strength and direction of this relationship has been debated, e.g., Ollerton and Cranmer (2002);
Moles and Ollerton (2016).

Luna et al. (2022) added to this discussion by assessing how current and historical environmental
factors structure specialization in open (i.e., freely accessible) plant-pollinator networks. Specifically,
they explored how net primary productivity (NPP), elevation, temperature (annual mean and
historical stability), and precipitation (annual mean and historical stability) influenced three
metrics of specialization—niche overlap, linkage density and mean normalized degree. They found
significant relationships with these specialization metrics and thus concluded that the environment—
in particular climate and resource availability—explained global variation in trophic specialization.

One major limitation from Luna et al. (2022), however, is their use of open networks without
appropriate controls for non-systematic sampling and differences in network construction. Without
these controls, networks likely contain structural differences due to, for example, differences in
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the amount of sampling time (CaraDonna et al., 2021), sampled area (Galiana et al., 2018), or
from differences in node resolutions (Hemprich-Bennett et al., 2021; Bodner et al., 2022). While
these differences can prevent commensurability and therefore should be appropriately identified and
controlled (Jordano, 2016), details about open networks are often unavailable, forcing researchers to
rely on other approaches to account for these structural differences.

While direct measures of sampling design are largely unavailable, network size could provide
a potential proxy measure for some design differences as variation in network size largely reflects
sampling differences (Michalska-Smith and Allesina, 2019). Indeed, controlling for this potential
bias in open networks can influence results as Morris et al. (2014) found no relationships between
latitude and network structure after controlling for network size. One metric commonly adopted to
help control for sampling differences, sampling intensity (Schleuning et al., 2012), also accounts for
network size and is typically used as a covariate to account for sampling bias in network structural
metrics, e.g., Ceron et al. (2019). Beyond design differences, network size could also reflect community
species richness, which is influenced by environmental factors. Regardless of the primary causes
of network size differences, however, capturing true network structural differences requires that
specialization metrics and network size are independent.

4.3 Analyses

We tested how network size (i.e., the product of the number of rows and columns) influenced the
specialization metrics of Luna et al. (2022) and compared our results to those from models that use
their environmental factors as explanatory variables. Given its common adoption in network studies,
we also additionally tested how sampling intensity was related to these specialization metrics. We
conducted our analyses using the same methods and open networks as Luna et al. (2022).

First, we tested the relationship between all metrics of specialization with network size and found
for each a strong and statistically significant correlation, i.e., all had an absolute correlation between
0.71 and 0.79 (Figure 4.1). The relationships between sampling intensity and specialization metrics
were also quite strong (S4.8 Appendix: Figure S4.1).

Next, we tested linear mixed models for each specialization metric using three different fixed
effect structures: (i) network size alone; (ii) the five current and historical environmental variables
from Luna et al. (2022); and (iii) network size with the five environmental variables (Table 4.1). For
all mixed models, network location was included as a random effect. We found that network size
alone best explained the variation captured via the fixed effects in two of the three specialization
metrics—niche overlap and linkage density. For mean normalized degree, while fixed effects structure
(iii) explained 55% of the variation, which suggested environmental factors were contributing to
the model, network size alone explained over 35% of the variation. Similar results were obtained
with sampling intensity (S4.8 Appendix: Table S4.1). Hence, we found that both network size and
sampling intensity were the strongest individual contributors for explaining the variation across the
specialization metrics.
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4.4 Conclusion

Environmental factors are correlated with the specialization metrics of niche overlap, linkage density
and mean normalized degree. However, we found that network size alone explained more of the
variation than all five environmental variables for two out of the three metrics as presented by Luna
et al. (2022), and that network size and metrics related to network size (i.e., sampling intensity) were
the best variables for explaining all specialization metrics. Our results provide a more parsimonious
alternative to explain the variation in specialization metrics and question the conclusion of Luna
et al. (2022) that the environment determines specialization in plant-pollinator communities.

4.5 Data and code availability

All data and code to reproduce our results are available at: www.osf.io/q23vz/.
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4.6 Figure

Figure 4.1. Pearson correlation (r) between network size (defined by the product of the number of
plant and pollinator species; i.e., rows·columns) and the three specialization metrics of niche overlap,
linkage density, and mean normalized degree for 87 plant-pollinator networks.
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4.7 Table

Table 4.1. Linear mixed models (LMMs) for the three specialization metrics of niche overlap, mean
normalized degree, and linkage density with log transformed network size (defined by the product
of the number of plant and pollinator species), and the environmental variables from Luna et al.
(2022) as explanatory variables. Luna et al. (2022) best model represents the LMMs that Luna et al.
(2022) used for showing how the environment explains each specialization metric. The amount of
variation explained by the fixed effects is represented by R2

marg, and the amount explained by both
the fixed and random effects is represented by R2

cond. The random effect used in all models is network
location.

Metric Description Fixed effects
variables R2

marg R2
cond

Niche
overlap

Only network
size Network size 0.407 0.643

Luna et al. (2022)
best model

NPP, mean annual temp.,
mean annual precip., historical

temp. stability, elevation
0.133 0.465

Network size
+Luna et al. (2022)

best model

Network size, NPP, mean annual
temp., mean annual precip.,

historical temp. stability,
elevation

0.427 0.628

Mean
normalized

degree

Only network
size Network size 0.357 0.881

Luna et al. (2022)
best model

NPP, mean annual precip.,
historical temp. stability, historical

precip. stability, elevation
0.467 0.749

Network size
+Luna et al. (2022)

best model

Network size, NPP, mean annual
precip., historical temp. stability,

historical precip. stability, elevation
0.550 0.859

Linkage
density

Only network
size Network size 0.434 0.739

Luna et al. (2022)
best model

NPP, mean annual temp,
mean annual precip., historical

precip. stability, elevation
0.285 0.801

Network size
+Luna et al. (2022)

best model

Network size, NPP, mean annual temp.,
mean annual precip., historical

precip. stability, elevation
0.429 0.823
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S4.8 Appendix

S4.8.1 Supplementary figure

Figure S4.1. Pearson correlation (r) between sampling intensity and the three specialization metrics
of niche overlap, linkage density, and mean normalized degree for 87 plant-pollinator networks.
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S4.8.2 Supplementary table

Table S4.1. Linear mixed models (LMMs) for the three specialization metrics of niche overlap,
mean normalized degree, and linkage density with log transformed sampling intensity, and the
environmental variables from Luna et al. (2022) as explanatory variables. Luna et al. (2022) best
model represents the LMMs that Luna et al. (2022) used for showing how the environment explains
each specialization metric. The amount of variation explained by the fixed effects is represented by
R2

marg, and the amount explained by both the fixed and random effects is represented by R2
cond. The

random effect used in all models is network location.

Metric Description Fixed effects
variables R2

marg R2
cond

Niche
overlap

Only sampling
intensity Sampling intensity 0.321 0.487

Luna et al. (2022)
best model

NPP, mean annual temp.,
mean annual precip., historical

temp. stability, elevation
0.133 0.465

Sampling intensity
+Luna et al. (2022)

best model

Sampling intensity, NPP, mean
annual temp., mean annual precip.,
historical temp. stability, elevation

0.322 0.509

Mean
normalized

degree

Only sampling
intensity Sampling intensity 0.581 0.871

Luna et al. (2022)
best model

NPP, mean annual precip.,
historical temp. stability, historical

precip. stability, elevation
0.467 0.749

Sampling intensity
+Luna et al. (2022)

best model

Sampling intensity, NPP, mean annual
precip., historical temp. stability,

historical precip. stability, elevation
0.686 0.874

Linkage
density

Only sampling
intensity Sampling intensity 0.255 0.519

Luna et al. (2022)
best model

NPP, mean annual temp.,
mean annual precip., historical

precip. stability, elevation
0.285 0.801

Sampling intensity
+Luna et al. (2022)

best model

Sampling intensity, NPP, mean
annual temp., mean annual precip.,
historical precip. stability, elevation

0.355 0.735
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Chapter 5

Shortcomings of reusing species
interaction networks created by
different sets of researchers

A version of this chapter has been published as: Brimacombe C., K. Bodner, M. Michalska-Smith, T.
Poisot, and M.-J. Fortin. Shortcomings of reusing species interaction networks created by different
sets of researchers. PLOS Biology, 2023, 21:e3002068.

5.1 Abstract

Given the requisite cost associated with observing species interactions, ecologists often reuse species
interaction networks created by different sets of researchers to test their hypotheses regarding
how ecological processes drive network topology. Yet, topological properties identified across these
networks may not be sufficiently attributable to ecological processes alone as often assumed. Instead,
much of the totality of topological differences between networks—topological heterogeneity—could
be due to variations in research designs and approaches that different researchers use to create each
species interaction network. To evaluate the degree to which this topological heterogeneity is present
in available ecological networks, we first compared the amount of topological heterogeneity across
723 species interaction networks created by different sets of researchers with the amount quantified
from non-ecological networks known to be constructed following more consistent approaches. Then,
to further test whether the topological heterogeneity was due to differences in study designs, and
not only to inherent variation within ecological networks, we compared the amount of topological
heterogeneity between species interaction networks created by the same sets of researchers (i.e.,
networks from the same publication) with the amount quantified between networks that were
each from a unique publication source. We found that species interaction networks are highly
topologically heterogeneous: while species interaction networks from the same publication are much
more topologically similar to each other than interaction networks that are from a unique publication,
they still show at least twice as much heterogeneity as any category of non-ecological networks that
we tested. Altogether, our findings suggest that extra care is necessary to effectively analyze species
interaction networks created by different researchers, perhaps by controlling for the publication
source of each network.
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5.2 Introduction

Network approaches are routinely used as a tool to analyze ecological systems (Blüthgen, 2010;
Poisot et al., 2016b; Delmas et al., 2019; Fortin et al., 2021). This popularity extends to species
interaction networks which model ecological communities, where nodes represent species and edges
represent their corresponding species interactions (Dormann et al., 2017). Due to the effort needed
to observe species and their interactions in situ, creating species interaction networks requires a
tremendous amount of resources for their adequate construction (Jordano, 2016; Pellissier et al.,
2018; McLeod et al., 2021). Given this requisite effort, instead of creating their own networks,
ecologists often reuse available species interaction networks which happen to be created by different
sets of researchers, to test their own ecological hypotheses (Poisot et al., 2021; Brimacombe et al.,
2022b). These available species interaction networks have therefore been used in many ecological
studies including when determining the complexity of networks (Strydom et al., 2021b), identifying
common topological properties across networks (Mora et al., 2018; Michalska-Smith and Allesina,
2019), and evaluating how network topology is shaped by species traits (Dalsgaard et al., 2021),
environmental factors/space (Olesen and Jordano, 2002; Dalsgaard et al., 2017; Pellissier et al.,
2018; Doré et al., 2021), and time (CaraDonna and Waser, 2020; Schwarz et al., 2020; CaraDonna
et al., 2021).

A current crux of reusing available species interaction networks created by different sets
of researchers, however, is the unwanted topological differences that can exist due to the lack
of consistency in the way ecological systems are translated into networks by different sets of
researchers (Dormann et al., 2009; Ings et al., 2009; Gibson et al., 2011; Doré et al., 2021; Mestre
et al., 2022a; Quintero et al., 2022; Salim et al., 2022; Vázquez et al., 2022) [Figure 5.1]. While some
criticisms related to this issue had been raised in the 1980s/90s, e.g., Paine (1988); Polis (1991), with
the increasing availability to the internet and growth in computational power, a renewed interest in
networks was sparked, and many of these concerns were overlooked (Pringle and Hutchinson, 2020).

In order to effectively reflect on these criticisms and overall problems that occur when reusing
species interaction networks created by different sets of researchers, we thought it necessary to
first have a vocabulary to do so. As such, we introduce a framework that partitions how the
totality of these topological differences—topological heterogeneity—between species interaction
networks created by different sets of researchers can originate, by broadly organizing its sources
into three classes (Table 5.1): biological and environmental drivers, sampling strategies, and network
construction methods. The biological and environmental drivers class consists of sources of topological
heterogeneity that arise from the different (a)biotic conditions that shape species and their
interactions across different communities. For example, abiotic conditions including temperature
can influence whether a species persists as well as modify their interactions (Welti and Joern,
2015). Likewise, biotic drivers such as population sizes can influence both the existence and strength
of interactions (Vázquez et al., 2007, 2009). The sampling strategies class consists of sources of
topological heterogeneity that arise from the different study design decisions made by researchers
when observing species and their interactions, and determines which effects from (a)biotic factors are
included in the network, e.g., how larger sampling area and larger sampling time can capture greater
environmental factors. The network construction methods class consists of sources of topological
heterogeneity that are introduced via the different decisions made by researchers when constructing
each network, e.g., only using plant species from a single genus (Fig 5.2A) or including unidentified
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species in the network (Fig 5.2B). In combination, these classes of topological heterogeneity make
it incredibly difficult to decipher which topological properties in species interaction networks might
be due to the ecological process of interest rather than due to unwanted sources of heterogeneity.

Structural differences between species interaction networks are not problematic per se since
topological heterogeneity is necessary for determining drivers of that topology. However, large
amounts of topological heterogeneity between networks created by different sets of researchers may
be indicative of networks that lack commensurability (Brimacombe et al., 2022a). While some studies
attempt to control for inconsistencies in the way species interaction networks are created by different
researchers, e.g., controlling for sampling effort (Schleuning et al., 2012) or network size (Morris et al.,
2014), these controls do not account for all associated unwanted topological heterogeneity when
using the many different topological metrics adopted by ecologists. Hence, evaluating the amount
of topological heterogeneity present in species interaction networks created by different researchers
is a necessity. One approach to do this is by comparing the dispersion of network topology within
species interaction networks to other real world networks that are not significantly hampered by the
classes of heterogeneity listed in Table 5.1. If a system is accurately portrayed by its own networks,
we would expect these networks to have a small amount of dispersion expressed within the metrics
used to capture their topology.

As an attempt to quantify ecological topological heterogeneity, we used the largest set of bipartite
networks and measured the amount of topological dispersion in (i) species interaction networks
compared to non-ecological networks, and (ii) species interaction networks created by the same set
of researchers (i.e., networks from the same publication) compared to the species interaction networks
each a product of their own publication. We quantified differences in network topology using directed
graphlet correlation distance (Yaveroğlu et al., 2014); a heuristic method that measures the Euclidean
distance between networks, where networks closer together are those that are more topologically
similar.

To measure topological heterogeneity, we evaluated the total dispersion in directed graphlet
correlation distances between networks of the same domain (defined below). As most ecological
networks do not have metadata regarding the conditions under which each network was created (i.e.,
their associated biological and environmental drivers, sampling strategies, and network construction
methods) we could not partition topological heterogeneity across the heterogeneity classes. However,
as we quantified the total dispersion in non-ecological networks from different domains which are,
to a large extent, not hampered by the three classes of heterogeneity, we could use these dispersion
values to estimate the total amount of topological heterogeneity as a result of all three heterogeneity
classes in species interaction networks. Furthermore, we compared the total dispersion of species
interaction networks from the same publication to those that are not from the same publication
to determine if there are topological biases due to the ways in which different sets of researchers
construct networks.
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5.3 Methods

5.3.1 Data

A total of 3476 bipartite networks were used in this study (see Table 5.2 for a description of all
networks and their domains). Of the non-ecological bipartite networks included in our analysis, 1830
were of the crime domain, 109 were of the journal domain, 245 were of the legislature domain,
172 were of the actor domain, 194 were of the sports domain, and 203 were of the microbiome
domain. We classified microbiome networks as non-ecological since, among other properties, they
were not built using observational data (instead, for example, by swabs and subsequent RNA
sequencing), and had concrete definitions for their edges/nodes (i.e., locations on the human body
where a bacterial operational taxonomic unit was found)—two stark features that differ from species
interaction networks (our ecological networks). See Aagaard et al. (2013) for a thorough description
of how patients were selected, and operational taxonomic units were sampled, which were the data
we used to build the microbiome networks. Although microbiome networks could be considered
ecological, we believed that their topological heterogeneity would more resemble non-ecological
networks and thus grouped them accordingly. Except for sports networks which we constructed for
this paper, and whose data were obtained from Lahman (2021), www.basketball-reference.com,
and www.hockey-reference.com, all non-ecological networks were obtained from Michalska-Smith
and Allesina (2019). Of the 723 species interaction networks used in this analysis [obtained
from Brimacombe et al. (2022b)], 10 were ant-plant networks, 97 were host-parasite networks, 41 were
plant-herbivore networks, 298 were plant-pollinator networks, and 277 were seed-dispersal networks.
All networks that were included in our analysis were unweighted (i.e., interactions between nodes
were binary).

We included non-ecological systems for comparison in our study given the strict definitions used to
define their systems, thereby eliminating much of the biological and environmental drivers, sampling
strategies, and network construction methods classes of heterogeneity that can strongly influence the
topology of species interaction networks created by different sets of researchers. Here, “strict” refers
to the high likelihood that the data for these non-ecological systems were recorded consistently using
such definitions that their respective nodes/edges would more accurately and precisely reflect their
intended purpose when implemented as a network, as compared to species interaction networks.
Furthermore, we either built each non-ecological network ourselves (i.e., sports networks), or used
those previously built by us [i.e., all non-ecological networks other than sports were obtained
from Michalska-Smith and Allesina (2019)], thus ensuring appropriate data were used to build each
non-ecological network. Indeed, the data used to build these networks came from specific databases
for each domain (or subgroup within each domain, where subgroup refers to the different categories of
a domain that networks represented, see Table 5.2). Moreover, as the data for each domain/subgroup
of non-ecological networks came from the same database, if any class of heterogeneity were to
influence their topology, the resulting heterogeneity would at least be consistent, and thereby reduce
potential dispersion in measured topological heterogeneity. While undoubtedly the three classes
of heterogeneity still influence non-ecological networks, for instance, due to the misidentification
of nodes, we expected that these classes would be significantly less influential than those within
species interaction networks. In particular, we expected large amounts of topological heterogeneity
in available species interaction networks created by different sets of researchers resulted from the
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inconsistent ways ecological communities were translated into networks by the different sets of
researchers. We expected this would have introduced inconsistent topology across species interaction
networks thereby increasing the dispersion in measured topological heterogeneity.

To avoid extremely small bipartite networks that may bias our results (Michalska-Smith and
Allesina, 2019), we only included networks that had at least five nodes in either disjoint sets
of nodes, e.g., we required at least five pollinator and five plant species in a plant-pollinator
network. Additionally, only the giant component of each network was used (i.e., the largest connected
component of a graph), given that it is unclear how to appropriately analyze disconnected networks.

5.3.2 Directed graphlet correlation distance (DGCD)

In ecology, the most adopted subgraph technique is based on motifs. Generally, for a graph G
composed of a set of nodes V and a set of links L, denoted as G(V,L); a motif of G is a subgraph
G’ (V’,L’ ) with a subset of nodes V’ from V where any edges linking the nodes of V’ found in V
are contained in L’ (Milo et al., 2002; Stouffer et al., 2007). As differences in network structure are
measured by which motifs are under-/over-represented in the real network compared to a chosen
network null model (Pržulj et al., 2010; Yaveroğlu et al., 2014), like many statistical analyses, the
results from the motif analysis depend on the choice of null model. As a consequence, motifs have
been cited for possibly relying on ill-posed null models as a basis for significance testing (Artzy-
Randrup et al., 2004).

To overcome the null model limitation, we instead adopted the subgraph technique of directed
graphlet correlation distance (DGCD) (Sarajlić et al., 2016) to characterize the topological differences
between networks. Generally, DGCD evaluates network pairwise dissimilarity without relying on a
network null model, and does so by quantifying differences in the associations between the appearance
of directed graphlets (Figure 5.3A) within a given network to those of another empirical network.

Formally, graphlets are the induced subgraphs G’ (V’,L’ ), consisting of a subset of nodes V’ from
V where all the edges linking the nodes of V’ found in V are in the set L’. Within graphlets, nodes
are often indistinguishable from one another. Take for example the graphlet G2 in Figure 5.3A: in
this case, both black nodes in this graphlet are indistinguishable, and thus form an automorphism
orbit—simply “orbit”—of a graphlet. For this reason, there is only two orbits within G2, labelled 5
and 6.

Generally, the DGCD relies on the directed graphlet correlation matrix (DGCM) of each network
which contains Spearman’s correlations between the number of times nodes appear as particular
orbits with the number of times nodes appear as all other orbits within the given network (see
Figure 5.3B for an example count of orbit 6 for a particular node of a bipartite network). For
example, the Spearman’s correlation between orbits 1 and 6 represented in a DGCM is calculated
by taking the Spearman’s correlation between: (i) a vector where each index corresponds to a specific
node and the entry of that index would be the number of times that node appeared as orbit 1, and
(ii) same as (i) except for orbit 6. Thus, when using all 13 orbits, DGCMs were symmetric 13× 13

matrices containing the respective Spearman’s correlations between the appearances of all 13 orbits
within a network. Using the DGCMs, the pairwise DGCD was evaluated by measuring the pairwise
Euclidean distances between all networks. See eq. (5.1) for a single pairwise DGCD measure between
networks Ki and Kj using the 13 orbits from Figure 5.3A (termed DGCD-13 since it uses 13 orbits),
and S5.10 Appendix: Subsection S5.10.1 for an example derivation of the DGCD technique. We used
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DGCD in our study since recently Tantardini et al. (2019) found that this method performs best at
characterizing and distinguishing between networks of different domains.

DGCD-13 (Ki,Kj) =

√√√√ 12∑
n=0

12∑
m=n+1

(
DGCM-13Ki(n,m)− DGCM-13Kj (n,m)

)2 (5.1)

where DGCM-13Ki(n,m) is the directed graphlet correlation matrix-13’s value of network Ki for
orbits n and m.

Since it is expected that networks from the same domain have similar topology, it is also expected
that their DGCMs are similar, and consequently have small pairwise DGCD. Thus, when projected
in visual space, networks from the same domain should be clustered together.

We calculated the pairwise DGCD-13 for all bipartite networks, where we assigned directions to
the edges in the networks. Since bipartite networks are characterized by two sets of nodes where
nodes belonging to the same set cannot have an edge, we assigned nodes belonging to one set to
always represent a “to” direction and the other set of nodes to always represent a “from” direction in
the directed edges. Simply put, this means that the DGCD-13 technique could recognize which nodes
belonged to which set of nodes (e.g., which nodes belonged to the pollinator set of nodes and which
nodes belonged to the plant set of nodes in a plant-pollinator network). According to these direction
definitions imposed on the networks, only graphlets G0, G2, and G3 could appear although all six
graphlets and 13 orbits were used for better visualization—specifically Figure 5.4—but see S5.10
Appendix: Subsection S5.10.1 for subsequent analyses using only the six orbits from graphlets G0,
G2, and G3, termed DGCD-6. Nevertheless, we note that the results presented in this article for
DGCD-13 agree with those those presented in S5.10 Appendix: Subsection S5.10.1 using DGCD-6.

From all pairwise DGCD-13s, we measured the dispersion of network topology by calculating the
mean pairwise distances between all networks of the same domain. In cases where subgroups (e.g.,
hockey networks) formed coherent topology that was different from their domain (e.g., the mean
pairwise DGCD-13 was much smaller for hockey networks compared to all other sports networks)
we instead evaluated the mean pairwise DGCD-13 for that subgroup. If the set of networks from the
same domain or subgroup had small mean pairwise DGCD-13 then this would indicate that these
networks have small dispersion in their topology, i.e., they are similarly structured.

Additionally, we tested whether species interaction networks created by the same set of
researchers (i.e., networks sourced from the same publication) were more topologically similar than
networks not sourced from the same publication, see S5.10 Appendix: Table S5.3 for a list of
publications that provided more than a single network. Specifically, we compared the mean pairwise
DGCD-13 of networks from the same publication to the mean pairwise DGCD-13 of networks
that were each a product of their own publication. Given that networks constructed by the same
researchers are likely more parsimonious in terms of their topology, we expected that the mean
pairwise DGCD-13 between networks from the same publication were going to be smaller than
networks each produced by different publications.

122



5.4 Results

The pairwise DGCD-13 between all networks was projected via multidimensional scaling
[MDS] (Borg and Groenen, 2005), also commonly known as principal coordinate analysis, using
the MDS function in the Scikit-learn library (Pedregosa et al., 2011) of Python. Except for species
interaction networks, only networks that formed clear clusters were uniquely coloured and identified
in the MDS plot (Figure 5.4). Most networks from the same domain occurred in the same location
in the plot and were isolated from other networks’ domains in the MDS space except for species
interaction, sports, and crime networks. With regards to species interaction networks, no coherent
topology was observed as these networks covered all other types of non-ecological networks besides
microbiome and sports networks. With regards to sports and crime networks, specific cities (i.e.,
the subgroups of Chicago, Denver, Minneapolis, San Francisco, and Washington) and specific sports
(i.e., the subgroups of hockey, baseball, and basketball) had unique topology and formed their
own respective subgroupings within the plot, and thus despite not having the same topology, there
was clear topological coherence within a city’s own set of crime networks and a sports’ own set of
networks. Here, subgrouping refers to networks from a specific subgroup that formed clear and unique
clusters in the MDS plot. Since every network’s domain was composed of multiple different subgroups
(e.g., actor networks were made from action, adventure, . . . , western movie genres/subgroups,
Table 5.2) each domain could have potentially formed their own distinct subgroupings within
Figure 5.4 if they exhibited unique substructure like crime and sports networks.

Of networks from the same domain or networks that had their own subgroupings within the MDS
plot (Figure 5.4), species interaction networks had the largest mean pairwise DGCD-13 of 1.101—
about twice as much as the set of legislation networks which was the next domain or subgrouping
with the most topological dispersion (Table 5.3). This pattern also held when using median pairwise
DGCD-13 (S5.10 Appendix: Table S5.2) and so mean DGCD-13 was not significantly influenced by
outliers. As well, the large variability in the size of species interaction networks did not contribute
to this larger mean pairwise DGCD-13 value (S5.10 Appendix: Table S5.4). Interestingly, both
legislation and Minneapolis crime networks also had relatively high mean pairwise DGCD-13 (0.578
and 0.509, respectively), although legislation networks were composed of four subgroups that did
not form subgroupings in the MDS plot (i.e., U.S. House, U.S. Senate, U.N. General Assembly, and
European Parliament) which likely contributed to this larger value.

Exclusively within the species interaction domain, networks from the same publication were
more topologically similar, by about a factor of two, than networks that were each a product of
their own publication (0.544 and 1.134 mean pairwise DGCD-13, respectively, Table 5.4). This
smaller dispersion within networks from the same publication was also about 32% less than the
topological dispersion within the ecological subgroup that had the least topological dispersion, i.e.,
ant-plant (0.794 pairwise DGCD-13, Table 5.3). It should be noted, however, that while ant-plant
networks were the least topologically heterogeneous subgroup of species interaction networks tested,
this should not be generalized given that we only had a few networks available to us (n = 10)
which were sourced from only three publications. Nevertheless, although networks from the same
publication were generally of the same species interaction subgroup (i.e., most networks from a
specific publication belonged to only one of either ant-plant, host-parasite, plant-herbivore, plant-
pollinator, or seed-dispersal subgroup), networks from the same publication were more topologically
similar than any single species interaction subgroup.
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5.5 Discussion

Ecologists commonly reuse species interaction networks created by different sets of researchers to test
how ecological and environmental processes shape network topology across space and time (Poisot
et al., 2021; McLeod et al., 2021; Mestre et al., 2022a). However, unwanted topological differences
as a result of the different ways in which researchers translate ecological communities into networks
could inhibit their commensurability (Gibson et al., 2011; Brimacombe et al., 2022b; Quintero et al.,
2022). When assessing the degree of topological heterogeneity, i.e., the total amount of topological
differences between a group of networks, we find that species interaction networks created by
different sets of researchers are extremely topologically heterogeneous—about twice the amount
than the next most heterogeneous network domain tested—and that this large heterogeneity is
linked to the publication source of each network. Altogether, these findings suggest that species
interaction networks created by different sets of researchers can be problematic for deducing
ecological topological rules since much of the topological heterogeneity is likely not due to ecological
processes as is often assumed.

A general principle in statistics is that an increased sample size reduces uncertainties of
estimators (Dietze, 2017). Armed with this principle, and the ease with which species interaction
networks can be obtained from online resources (Salim et al., 2022), it may then be tempting
to assume that increasing one’s data set by collecting all possible networks available alleviates
any data issues. However, using the largest set of bipartite species interaction networks available
(n = 723), we illustrate how large amounts of topological heterogeneity (via the mean pairwise
DGCD-13, Table 5.3) and consequently uncertainty exists in the topology of species interaction
networks created by different sets of researchers, confirming that more data is not always better
when biases are present (Dietze, 2017). While some metrics, including sampling intensity and effort,
have previously been used to control for biases and sources of topological heterogeneity in species
interaction networks (Brimacombe et al., 2022a), these controls do not effectively account for all
sources of heterogeneity (e.g., differences in node taxonomy across networks) or when using different
topological metrics (e.g., modularity, nestedness). Hence, careful consideration, beyond a single
metric of control, is required when deciding which networks to include in one’s analyses, so that
the majority of topological differences measured between species interaction networks are a result
of the ecological process-of-interest and not from confounding factors.

The large amount of topological heterogeneity in species interaction networks created by different
sets of researchers likely reflects their topological uniqueness due to the distinct (a)biotic conditions
each represented community experiences, the distinct sampling strategies adopted to characterize
each ecological system as a network, and the distinct construction methods used to create each
network (Table 5.1). Indeed, the large difference in the amount of topological heterogeneity between
species interaction networks and non-ecological networks may be attributed to these three classes of
topological heterogeneity given that the non-ecological networks were created in a consistent way to
try to eliminate much of their influence. For example, we built non-ecological networks using data
attained from consistent sampling strategies (e.g., each sampled crime network represented a specific
city and day of the year in 2016) and we used consistent network construction definitions when
building the networks from the data (e.g., all interactions in crime networks always represented a type
of crime occurring in a city’s specific neighborhood). This is not to say that non-ecological networks
are devoid of their own sources of topological heterogeneity. For instance, differences in both voter
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sentiment across time and differences in the political landscape across space within the legislative
networks (e.g., between U.S. House and U.N. General Assembly networks) likely contribute some
topological heterogeneity. However, the biological and environmental drivers, sampling strategies, and
network construction methods classes of heterogeneity seem to be accentuated in species interaction
networks created by different sets of researchers as compared to the tested non-ecological networks.

Importantly, even though biological and environmental drivers, sampling strategies, and network
construction methods classes of heterogeneity are known to influence the topology of species
interaction networks, they are nevertheless rarely acknowledged or appropriately controlled in
ecological studies. This is especially problematic when reusing networks created by different
sets of researchers since the influence of these classes are likely to vary considerably depending
on the methods and approaches that different researchers use to create each network. In fact,
rarely are differences in sampling strategies controlled for when reusing networks, even though
sampling strategies influence network topology. For example, species interaction networks are already
topologically different when constructed from observational data collected over different amounts
of time (CaraDonna and Waser, 2020; Schwarz et al., 2020; CaraDonna et al., 2021), or over
different amounts of area (Galiana et al., 2018, 2022). Furthermore, related to variations in sampling
strategies, networks may also vary in their sampling sufficiency (Casas et al., 2018). Insufficiency
can occur when the sampling design does not match the biology of the community and can
make networks incommensurable even when networks are built using the same sampling strategies.
Moreover, differences in biological and environmental drivers that ecological communities experience
are sometimes not controlled for when reusing networks, even though these drivers can influence
network topology. For instance, species interaction networks are already topologically different
depending on the temperature each community experiences (Welti and Joern, 2015). As well, despite
the widespread reuse of species interaction networks created by different sets of researchers for testing
ecological hypotheses, it is still relatively unknown how different network construction methods
influence topology, which may also make network comparison difficult. For example, interactions
in one plant-pollinator network can represent a pollinator touching a plant and in another network
represent pollen of a plant being found on a pollinator (Hagen et al., 2012), or networks may or may
not contain pollinators which are commensals or parasitic to plants (Guimarães Jr., 2020). Thus,
without care and appropriate control of the topological differences from the three heterogeneity
classes, one is liable to find erroneous relationships when reusing species interaction networks created
by different sets of researchers (Ollerton and Cranmer, 2002; Morris et al., 2014).

All is not lost when reusing species interaction networks created by different sets of researchers,
as one approach to avoid a large amount of the topological heterogeneity may be to attempt to
control for the publication source of each network. While we found a large amount of topological
heterogeneity between all species interaction networks, we also found that networks created by the
same set of researchers (i.e., networks from the same publication) were more topologically similar
to each other (Table 5.4). Interestingly, we also found that networks from the same publication
were more topologically similar than networks from any species interaction subgroup (i.e., networks
belonging only to either ant-plant, host-parasite, plant-herbivore, plant-pollinator or seed-dispersal).
Consequently, it appears that publication has an even greater impact on the topology of species
interaction networks than biological processes alone. This may occur since researchers of a given
publication generally construct networks under parsimonious conditions (Brimacombe et al., 2022b),
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for example by observing and characterizing ecological communities across the same time duration
[e.g., Trøjelsgaard et al. (2015)], or by classifying nodes across networks using the same protocol
[e.g., Pereira Martins et al. (2020)], and thus inadvertently control for many sources of topological
heterogeneity. Of course, biological effects are likely influencing the topology of all networks but
they can be more easily obscured when analyzing networks across publications. It is then likely
that controlling for the effect of publication can reduce unwanted topological heterogeneity between
networks. We do, however, strongly caution those that only attempt to account for the publication
source of each reused network. Similar to how different network metrics are sensitive to different
amounts of sampling sufficiency (Casas et al., 2018), the strong similarity between networks from
the same publication may be more or less relevant when investigating network structure using other
metrics.

Although most researchers do not originally intend for their networks to be reused and compared
to other networks, often they are included in meta-analysis type studies if they are made freely-
available. Original authors of networks can improve the scientific utility of their networks by
providing other researchers with information about how they were constructed (Mestre et al., 2022a).
In particular, by providing detailed network metadata, including information on relevant biological
and environmental drivers, sampling strategies, and network construction methods, authors of the
networks can help others understand the specific conditions under which each network was created.
Additionally, given the recent developments of composite methods designed to estimate sampling
sufficiency for ecological networks [e.g., Casas et al. (2018)], authors of species interaction networks
could also calculate this metric or provide the information to do so to check if communities have been
sufficiently sampled. Then, beyond controlling for sources of topological heterogeneity (e.g., node
taxonomy), researchers reusing these networks could also control for sampling sufficiency which is
another means to improve network commensurability. Given appropriate metadata, researchers could
also study how each class of heterogeneity influences the topology of species interaction networks,
rather than the totality of topological heterogeneity as we have done here.

Nevertheless, as users of species interaction networks that happen to be constructed by different
sets of researchers, the onus is on us to know the limitations of our data and to ensure that they
effectively represent the systems in the corresponding models we use (Bodner et al., 2022). Given
that all species interaction networks are models and are thus subject to imperfections [e.g., Pringle
and Hutchinson (2020); Thomson (2021)], we should be aware of their overall shortcomings and
attempt to correct for them, especially since our findings are often used to inform policy aimed at
conserving ecological systems.

5.5.1 Caveats

A limitation in our analyses was the use of small species interaction networks (e.g., <100 nodes).
Since networks with a small number of nodes and edges are generally more difficult to classify than
larger networks (Yaveroğlu et al., 2014), we perhaps inadvertently increased the perceived topological
heterogeneity of species interaction networks as compared to some of the non-ecological networks.
Regardless, the crime networks we used were of similar size to species interaction networks (S5.10
Appendix: Table S5.1), but were less topologically heterogeneous (Table 5.3 and Figure 5.4). Clearly
then, it was still possible to find topological consistency even in small networks, but less so when
networks were both small and ecological. This suggests that the topological heterogeneity in species
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interaction networks created by different sets of researchers was due to more than just the difficulty
of classifying small networks, but likely also from biological and environmental drivers, sampling
strategies, and network construction methods classes of heterogeneity, which reused networks created
by different sets of researchers are especially prone to. Importantly, this same problem of using small
networks is also relevant when applying any other types of metrics to ecological networks, e.g.,
nestedness, modularity.

Although we generally failed to find pervasive and coherent topology within species interaction
networks created by different sets of researchers, we highlight that our results do not necessarily
invalidate patterns others have found [e.g., high nestedness in plant-animal networks (Bascompte and
Jordano, 2007)]. Instead, these patterns are perhaps true under strict conditions, such as controlling
for the unwanted differences in topology between studies when reusing their networks.

5.6 Conclusion

Species interaction networks created by different sets of researchers likely suffer from comparison
problems due to many sources of topological heterogeneity, i.e., via biological and environmental
drivers, sampling strategies, or network construction methods classes of heterogeneity. Quantitatively,
our findings show that these species interaction networks are remarkably topologically diverse and
that we should be especially careful when reusing this source of data for deducing rules of community
assembly, perhaps by controlling for the publication source of each network.

5.7 Data and code availability

All data and code to reproduce our results are available at: www.osf.io/my9tv.
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5.8 Figures

Biological and environmental drivers that 

alter a community’s network topology Sampling strategy decisions that affect which 

biological/environmental factors are 

observed during in situ sampling

Spatial elements

. Sampling location

. Extent and area resolution of observation

Temporal elements

. Sampling starting date/time

. Duration and time interval of observation

Network construction decisions 

that influence network topology 

. Node resolution

. Selection of the type of  

 interactions to include

. Type of environment 

. Population size

. Interaction frequency

Figure 5.1. Potential sources of topological heterogeneity that influence researchers’ interpretation of
a plant-pollinator community as a bipartite network. Here, the observed plant-pollinator community
(green oval) is translated into a researcher’s network representation (thought bubble). Sources of
topological heterogeneity between different researchers’ network interpretations of a community
could be introduced from: (i) observing different biological and environmental drivers (purple text)
that influence the community’s interactions, (ii) the different selected sampling strategies (orange
text) that influence which biological and environmental factors are included during a researcher’s
observation, and (iii) the different selected network construction methods (blue text) researchers use
to design a species interaction network.
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location of G2.
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Table 5.4. Mean pairwise directed graphlet correlation distance-13 (DGCD-13) of bipartite species
interaction networks from the same publication grouping. Multiple bipartite networks sourced from
the same publication (i.e., networks created by the same set of researchers) are termed “multiple
networks per publication” and bipartite networks sourced from publications that each produced only
a single network are termed “one network per publication”. See S5.10 Appendix: Table S5.3 for a list
of publications that provided more than one network and each publication’s mean pairwise DGCD-
13.

Publication grouping Mean pairwise
DGCD-13

Number of
networks

Number of
publications

One network per publication 1.134 236 236
Multiple networks per publication 0.5441 487 58

1Calculated by taking the mean of the average pairwise DGCD-13s between
networks from the same publication, weighted by the number of networks produced
by each publication.
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S5.10 Appendix

S5.10.1 Directed graphlet correlation distance general information

Here, we provide a brief introduction to the directed graphlet correlation distance 6 (DGCD-6).
While the same calculations are performed for DGCD-13, note that all graphlets with three or fewer
nodes (i.e., all 6 graphlets and 13 orbits in Figure S5.1) are used when employing DGCD-13, instead
of the 3 graphlets (G0, G2, G3) and 6 orbits (0, 1, 5, 6, 7, 8) when employing DGCD-6. We chose
to present DGCD-6 as an example derivation as opposed to DGCD-13 to simplify derivation in
Figures S5.2, S5.3, and S5.4. Specifically, the only difference between the two methods is that using
DGCD-13 with bipartite networks results in (i) additional zero entries in orbits 2, 3, 4, 9, 10, 11, and
12 for the directed graphlet degree vector in Figure S5.2, (ii) additional corresponding zero vectors
for orbits 2, 3, 4, 9, 11, and 12 in Figure S5.3, and (iii) similar to (ii) additional corresponding zero
vectors for orbits 2, 3, 4, 9, 11, and 12 for the two directed graphlet correlation matrices, as well as
additional squared terms when evaluating the DGCD equation in Figure S5.4.

Given a network, such as the one depicted in the first row of Figure S5.2, we must first determine
the number of times nodes occupy specific orbit positions. For DGCD-6, this amounts to counting
the number of times nodes occupy the orbits of graphlets G0 (orbits 0 and 1), G2 (orbits 5 and
6), and G3 (orbits 7 and 8). In tallying the number of times a node occupies orbital positions, the
directed graphlet degree vector for a node is constructed. In Figure S5.2, we provide the directed
graphlet degree vector for node A.

Once directed graphlet degree vectors for each node in a network are determined (where a single
directed graphlet degree vector is highlighted in red in Figure S5.3), the directed graphlet correlation
matrix can be assembled. In doing so, all possible Spearman’s correlations between the number of
times all nodes in a network occupy specific orbits are evaluated (see the highlighted green boxes in
Figure S5.3 as an example of a single Spearman’s correlation).

By computing the pairwise Euclidean distances between directed graphlet correlation matrices,
we can obtain an estimate of the topological differences between networks in a given set. An example
of a single pairwise Euclidean distance between two directed graphlet correlation matrices (i.e., two
networks) is shown in Figure S5.4.

Using all pairwise Euclidean distances between networks (i.e., all pairwise DGCD-6 between
networks/graphlet correlation matrices), we can visualize their dissimilarity by projecting their
distances using multidimensional scaling (MDS; see Figure S5.5 for an example). We performed
MDS using the MDS function in the Scikit-learn library of Python (Pedregosa et al., 2011).
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S5.10.3 DGCD-13 information

Table S5.2. Median pairwise directed graphlet correlation distance 13 (DGCD-13) between bipartite
networks from the same domain or subgrouping. Subgrouping refers to a subgroup [i.e., networks
classified as the same type of network from the same domain during network construction (e.g., the
Chicago networks in the crime network domain)] that formed an obvious cluster within the MDS
plot (Figure 5.4). See Table 5.2 for a list of network domains and their corresponding subgroups. All
species interaction networks were classified into their appropriate subgroup even though they did
not form subgroupings (e.g., Ant-plant).

Network
domain

Subgrouping
or subgroup

Median pairwise
DGCD-13

Number of
networks

Species
interaction

Ant-plant 0.744 10
Host-parasite 1.011 97

Plant-herbivore 1.260 41
Plant-pollinator 0.802 298
Seed-dispersal 1.032 277

None1 1.042 723
Actor 0.359 172

Crime

Chicago 0.122 366
Denver 0.167 366

Minneapolis 0.431 366
San Francisco 0.146 366
Washington 0.277 366

Journal 0.123 109
Legislation 0.482 245
Microbiome 0.233 203

Sports
Baseball 0.197 71

Basketball 0.399 68
Hockey 0.254 55

1DGCD-13 between all species interaction networks.
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Table S5.3. Mean pairwise directed graphlet correlation distance 13 (DGCD-13) between bipartite
species interaction networks from the same publication grouping. Bipartite networks sourced from
publications that produced only a single network are termed “one network per publication”.

Bipartite type(s)/
subgroup

Publication grouping
Mean pairwise

DGCD-13
Number of
networks

Ant-plant,
host-parasite,

plant-herbivore,
plant-pollinator,
seed-dispersal

One network
per publication

1.134 236

Ant-plant Passmore et al. (2012) 0.622 8

Host-parasite

Arai and Mudry (1983) 0.387 2
Kirjušina and Vismanis (2007) 0.717 2

Host-parasite Violante-González et al. (2007) 0.160 2
Hadfield et al. (2014) 0.765 47
Pilosof et al. (2013) 0.214 6

Host-parasite,
plant-herbivore

Macfadyen et al. (2009) 0.608 33

Plant-herbivore
Henneman and Memmott (2001) 0.411 2

Pereira Martins et al. (2020) 0.350 9

Plant-pollinator

Arroyo et al. (1982) 0.481 3
Brosi et al. (2017) 0.562 30

Carstensen et al. (2018) 0.478 14
Dicks et al. (2002) 0.260 2

Dupont and Olesen (2009) 0.254 2
Gilarranz et al. (2015) 0.283 12

Kaiser-Bunbury et al. (2010) 0.585 24
Kaiser-Bunbury et al. (2014) 0.605 44
Lara-Romero et al. (2016) 0.514 38

Norfolk et al. (2018) 0.516 2
Maglianesi et al. (2014) 0.475 3
Magrach et al. (2018) 0.298 12
Medan et al. (2002) 0.295 2
Olesen et al. (2002) 0.429 2
Orford et al. (2016) 0.564 37

Primack (1983) 0.361 3
Sabatino et al. (2010) 0.336 5
Tinoco et al. (2017) 0.737 3

Trøjelsgaard et al. (2015) 0.454 14
Tur et al. (2013) 0.191 2

Table continued . . .
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. . . Continuation of Table S5.3.
Bipartite type(s)/

subgroup
Publication grouping

Mean DGCD-13
per group

Number of
networks

Seed-dispersal

Albrecht et al. (2015) 0.525 16
Carlo et al. (2003) 0.284 4

Chama et al. (2013) 0.321 9
Chaves (2018) 0.960 2

Correa et al. (2016) 0.554 2
Correia et al. (2017) 0.674 2
Cruz et al. (2013) 0.633 3

Ribeiro da Silva et al. (2015) 0.747 3
Dehling et al. (2014) 0.527 8
Farwig et al. (2017) 0.190 2

Galetti and Pizo (1996) 1.230 2
García et al. (2014) 0.561 6

Innis (1989) 0.575 2
Malmborg and Willson (1988) 0.623 3

Menke et al. (2012) 0.220 4
Passos et al. (2003) 0.673 2
Peredo et al. (2013) 1.084 2
Plein et al. (2013) 0.358 5

Purificação et al. (2014) 0.627 3
Quitián et al. (2019) 0.473 4

Ramos-Robles et al. (2016) 0.634 7
Ruggera et al. (2016) 0.536 10
Saavedra et al. (2014) 0.556 2

Del Valle (2014) 0.238 2
Snow and Snow (1988) 0.781 4

Gomes (2008) 0.357 2
Velho et al. (2012) 0.272 2

Vizentin-Bugoni et al. (2019) 0.687 7
Williams and Karl (1996) 0.767 2
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S5.10.3.1 DGCD-13 as a function of the number of species interaction networks
sourced from each publication (for publications that provide more than a
single network)

It was possible that the mean pairwise DGCD-13 for publications which provided more than a
single species interaction network were influenced by the number of networks sourced from each
publication. For example, it could have been the case that publications that each only provided
two species interaction networks had lower mean pairwise DGCD-13 between their own networks
than publications that each provided ten species interaction networks. However, we found no strong
relationships between the number of networks a publication provided and the mean pairwise DGCD-
13. Specifically, when dividing publications (which provided more than a single network) into
quartiles based on the number of networks each provided, there were no large differences in mean
pairwise DGCD-13 between quartiles (Figure S5.6). Thus, the mean pairwise DGCD-13 for species
interaction networks sharing a publication source was not strongly influenced by the number of
networks each publication provided.
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S5.10.3.2 DGCD-13 as a function of the variability in species interaction network size

It could have been the case that the larger variability in species interaction network size (i.e., number
of nodes) caused its larger mean pairwise DGCD-13, as compared to other non-ecological networks
which generally had less variability in network size. To test whether this was true, we divided species
interaction networks into quartile groups (by network size) to reduce variability in size across a group.
We then evaluated the mean pairwise DGCD-13 between the smallest networks (i.e., those within
the first quartile) and the largest networks (i.e., those within the fourth quartile) [Table S5.4]. We
removed any networks sourced from the same publication to eliminate the effect of publication in
this analysis. If multiple networks were sourced from the same publication within a quartile, we only
kept a single network from that publication. A single network was chosen using a simple criterion:
first, we kept the network with the largest size. If more than one network from the same publication
had the same size, we then chose the network with the highest connectance value. If again, more
than one network had the same connectance, we chose the network with the greatest number of rows
in its adjacency matrix.

Altogether, we found that the standard deviation in network size for the first quartile
(representing the smallest networks in our analyses) was considerably smaller in relation to its mean
network size as compared to the fourth quartile (representing the largest networks in our analyses).
Specifically, the first quartile had a standard deviation in network size of 4.259 and mean network
size of 18.544 while the fourth quartile had a standard deviation in network size of 217.844 and mean
network size of 170.652 (Table S5.4). However, the first quartile had a larger mean pairwise DGCD-
13 than the fourth quartile (1.088 vs. 0.982, respectively) which would not have been expected if
the variability in network size influenced mean pairwise DGCD-13. Hence, it does not appear that
the variability of network size strongly affected the mean pairwise DGCD-13 in species interaction
networks.

149



Table S5.4. Pairwise directed graphlet correlation distance 13 (DGCD-13) between species interaction
networks using the smallest and largest networks classified into quartiles (whereby size was
determined by number of nodes).

Network
domain

Size
quartile

Mean network size
(Std. dev.)

Mean pairwise DGCD-13
(Std. dev.)

Number of
networks1

Species interaction 1 18.544 (4.259) 1.088 (0.464) 90
4 170.652 (217.844) 0.982 (0.507) 112

1All networks included in each quartile were from different publications.
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S5.10.4 DGCD-6 information

Here, we reanalyzed the same bipartite networks as those in the main manuscript but instead with the
directed graphlet correlation distance that used only the six orbits (termed DGCD-6) from graphlets
G0, G2, and G3—specifically, orbits 0, 1, 5, 6, 7, and 8 (Figure S5.1). Generally, the same results were
obtained as in the main manuscript: species interaction networks were still the most topologically
heterogeneous networks (mean pairwise DGCD-6 of 0.620)—about 76% more heterogeneous than
the domain with the second most heterogeneity (i.e., Actor networks with mean pairwise DGCD-6
of 0.352) [Table S5.5 and Figure S5.7]. When instead using median pairwise DGCD-6 (Table S5.6),
these results still held, and so the large mean pairwise DGCD-6 found between species interaction
networks was not primarily driven by outliers. Moreover, exclusively within the species interaction
domain, networks from the same publication were much more topologically similar (by a factor of
about 2) than networks that were each a product of their own publication (0.331 and 0.634 mean
pairwise DGCD-6, respectively, Table S5.7).
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Table S5.5. Mean pairwise directed graphlet correlation distance 6 (DGCD-6) between bipartite
networks from the same domain or subgrouping. Subgrouping refers to a subgroup [i.e., networks
classified as the same type of network from the same domain during network construction (e.g., the
Chicago networks in the crime network domain)] that formed an obvious cluster within the MDS
plot (Figure S5.7). See Table 5.2 for a list of network domains and their corresponding subgroups.
All species interaction networks were classified into their appropriate subgroup even though they
did not form subgroupings (e.g., Ant-plant).

Network
domain Subgrouping or subgroup Mean pairwise

DGCD-6
Number of
networks

Species
interaction

Ant-plant 0.543 10
Host-parasite 0.586 97

Plant-herbivore 0.774 41
Plant-pollinator 0.526 298
Seed-dispersal 0.567 277

None1 0.620 723
Actor 0.352 172

Crime

Chicago 0.105 366
Denver 0.150 366

Minneapolis 0.334 366
San Francisco 0.127 366
Washington 0.217 366

Journal 0.214 109
Legislation 0.300 245
Microbiome 0.115 203

Sports
Baseball 0.130 71

Basketball 0.189 68
Hockey 0.134 55

1DGCD-6 between all species interaction networks.
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Table S5.6. Median pairwise directed graphlet correlation distance 6 (DGCD-6) between bipartite
networks from the same domain or subgrouping. Subgrouping refers to a subgroup [i.e., networks
classified as the same type of network from the same domain during network construction (e.g., the
Chicago networks in the crime network domain)] that formed an obvious cluster within the MDS
plot (Figure S5.7). See Table 5.2 for a list of network domains and their corresponding subgroups.
All species interaction networks were classified into their appropriate subgroup even though they
did not form subgroupings (e.g., Ant-plant).

Network
domain Subgrouping or subgroup Median pairwise

DGCD-6
Number of
networks

Species
interaction

Ant-plant 0.507 10
Host-parasite 0.555 97

Plant-herbivore 0.784 41
Plant-pollinator 0.487 298
Seed-dispersal 0.531 277

None1 0.589 723
Actor 0.306 172

Crime

Chicago 0.096 366
Denver 0.138 366

Minneapolis 0.295 366
San Francisco 0.108 366
Washington 0.198 366

Journal 0.113 109
Legislation 0.194 245
Microbiome 0.097 203

Sports
Baseball 0.111 71

Basketball 0.173 68
Hockey 0.125 55

1DGCD-6 between all species interaction networks.

154



Table S5.7. Mean pairwise directed graphlet correlation distance 6 (DGCD-6) of bipartite species
interaction networks from the same publication grouping. Bipartite networks sourced from the same
publication are termed “multiple networks per publication” and bipartite networks sourced from
publications that each produced only a single network are termed “one network per publication”.
See Table S5.8 for a list of publication that provided more than one network and each publication’s
mean pairwise DGCD-6.

Publication grouping Mean pairwise
DGCD-6

Number of
networks

Number of
publications

One network per publication 0.634 236 236
Multiple networks per publication 0.3311 487 58

1Calculated by taking the mean of the average pairwise DGCD-6s between
networks from the same publication, weighted by the number of networks produced
by each publication.
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Table S5.8. Mean pairwise directed graphlet correlation distance 6 (DGCD-6) between bipartite
species interaction networks from the same publication grouping. Bipartite networks sourced from
publications that produced only a single network are termed “one network per publication”.

Bipartite type(s)/
subgroup

Publication grouping
Mean pairwise

DGCD-6
Number of
networks

Ant-plant,
host-parasite,

plant-herbivore,
plant-pollinator,
seed-dispersal

One network
per publication

0.634 236

Ant-plant Passmore et al. (2012) 0.457 8

Host-parasite

Arai and Mudry (1983) 0.322 2
Kirjušina and Vismanis (2007) 0.330 2

Host-parasite Violante-González et al. (2007) 0.047 2
Hadfield et al. (2014) 0.369 47
Pilosof et al. (2013) 0.144 6

Host-parasite,
plant-herbivore

Macfadyen et al. (2009) 0.420 33

Plant-herbivore
Henneman and Memmott (2001) 0.291 2

Pereira Martins et al. (2020) 0.233 9

Plant-pollinator

Arroyo et al. (1982) 0.312 3
Brosi et al. (2017) 0.335 30

Carstensen et al. (2018) 0.328 14
Dicks et al. (2002) 0.199 2

Dupont and Olesen (2009) 0.152 2
Gilarranz et al. (2015) 0.209 12

Kaiser-Bunbury et al. (2010) 0.337 24
Kaiser-Bunbury et al. (2014) 0.354 44
Lara-Romero et al. (2016) 0.350 38

Norfolk et al. (2018) 0.227 2
Maglianesi et al. (2014) 0.297 3
Magrach et al. (2018) 0.174 12
Medan et al. (2002) 0.252 2
Olesen et al. (2002) 0.288 2
Orford et al. (2016) 0.360 37

Primack (1983) 0.224 3
Sabatino et al. (2010) 0.216 5
Tinoco et al. (2017) 0.470 3

Trøjelsgaard et al. (2015) 0.286 14
Tur et al. (2013) 0.185 2

Table continued . . .
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. . . Continuation of Table S5.8.
Bipartite type(s)/

subgroup
Publication grouping

Mean DGCD-13
per group

Number of
networks

Seed-dispersal

Albrecht et al. (2015) 0.315 16
Carlo et al. (2003) 0.195 4

Chama et al. (2013) 0.219 9
Chaves (2018) 0.667 2

Correa et al. (2016) 0.377 2
Correia et al. (2017) 0.238 2
Cruz et al. (2013) 0.434 3

Ribeiro da Silva et al. (2015) 0.498 3
Dehling et al. (2014) 0.231 8
Farwig et al. (2017) 0.144 2

Galetti and Pizo (1996) 0.777 2
García et al. (2014) 0.370 6

Innis (1989) 0.476 2
Malmborg and Willson (1988) 0.255 3

Menke et al. (2012) 0.143 4
Passos et al. (2003) 0.279 2
Peredo et al. (2013) 0.757 2
Plein et al. (2013) 0.237 5

Purificação et al. (2014) 0.346 3
Quitián et al. (2019) 0.241 4

Ramos-Robles et al. (2016) 0.372 7
Ruggera et al. (2016) 0.329 10
Saavedra et al. (2014) 0.391 2

Del Valle (2014) 0.152 2
Snow and Snow (1988) 0.386 4

Gomes (2008) 0.233 2
Velho et al. (2012) 0.210 2

Vizentin-Bugoni et al. (2019) 0.421 7
Williams and Karl (1996) 0.631 2
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Chapter 6

Publication-driven consistency in
food web structures: Implications for
comparative ecology

A version of this chapter will be published as: Brimacombe C., K. Bodner, D. Gravel, S. J. Leroux,
T. Poisot, and M.-J. Fortin. Publication-driven consistency in food web structures: Implications for
comparative ecology. Ecology.

6.1 Abstract

Large collections of freely available food webs are commonly reused by researchers to infer how
biological or environmental factors influence the structure of ecological communities. Although
reusing food webs expands sample sizes for community analysis, this practice also has significant
drawbacks. Since food webs are meticulously crafted by researchers for their own specific research
endeavours and resulting publications (i.e., books and scientific articles), the structure of these webs
inherently reflects the unique methodologies and protocols of their source publications. Consequently,
combining food webs sourced from different publications without accounting for discrepancies that
influence network structure may be problematic. Here, we investigate determinants of structure in
freely available food webs sourced from different publications, examining potential disparities that
could hinder their effective comparison. Specifically, we quantify structural similarity across 274

commonly reused webs sourced from 105 publications using a subgraph technique. Surprisingly, we
found no increased structural similarity between webs from the same ecosystem nor webs built using
similar network construction methodologies. Yet, webs sourced from the same publication were
very structurally similar and this degree of similarity increased over time. As webs sourced from
the same publication are typically sampled, constructed, and/or exposed to similar biological and
environmental factors, publications likely holistically drive their own webs’ structure to be similar.
Our findings demonstrate the large effect that publications have on the structure of their own webs
which stymies inference when comparing the structure of webs sourced from different publications.
We conclude by proposing different approaches that may be useful for reducing these publication-
related structural issues.
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6.2 Introduction

Food webs have a rich history in ecology (May, 1983; Paine, 1988; Winemiller, 1990; Dunne, 2006;
Guimarães Jr., 2020; Pringle and Hutchinson, 2020; Vázquez et al., 2022) as gaining insights into
aspects of who eats whom has major implications for individual fitness, population dynamics,
community structure, and evolutionary trajectories [e.g., Cohen et al. (1993); Pringle (2020)]. Beyond
depicting single interspecific interactions, whole food webs distill the complexity of intertwining
feeding interactions into mathematically tractable networks (Guimarães Jr., 2020), most often
defining an ecological community’s species as nodes and corresponding feeding interactions as
links (Cartozo et al., 2005). In this regard, many community-level properties have been inferred
from network topology (Delmas et al., 2019; Fortin et al., 2021), including stability, resilience, and
sustainability (McCann, 2011; Landi et al., 2018; Carpentier et al., 2021).

Much of our knowledge about food webs has relied on and continues to rely on reusing
and comparing the structure of freely available empirical webs (Winemiller, 1990; Goldwasser
and Roughgarden, 1993; Dunne, 2006; Poisot et al., 2021; Xing and Fayle, 2021). These freely
available webs are networks previously constructed by researchers for their own publications (i.e.,
books and scientific articles) that have been uploaded onto online open access repositories. For
example, the commonly used repository for obtaining species interaction networks, Web of Life
(www.web-of-life.es), contains 316 networks originally sourced from a purported 127 scientific
articles, and other published and unpublished works. Because constructing webs de novo from
original field data is extremely difficult, time consuming, and expensive (Polis, 1991; McLeod et al.,
2021; Borrelli et al., 2023)—not to mention ancillary to the expertise of many researchers who work
on food webs—freely available webs represent a cornucopia of community-level data that can be used
to investigate and test novel hypotheses (Xing and Fayle, 2021; Kita et al., 2022). Thus, webs from
online repositories are routinely reused in meta-analysis-like studies under the implicit assumption
that they are reliable and comparable, with little to no scrutiny of the properties of individual
webs (Pringle and Hutchinson, 2020; Brimacombe et al., 2023).

Similar to other types of species interaction networks, the drivers influencing food web structure
can be generally categorized into three broad classes: biological and environmental factors, sampling
strategies, and network construction methodologies (Brimacombe et al., 2023). Of the three classes,
ecologists are often most interested in biological and environmental factors, which include the biotic
and abiotic drivers that shape interspecific interactions in communities [e.g., how the presence
of transient seasonal predators alter food web structure (Brimacombe et al., 2021); how warmer
temperatures reduce community stability (Zhao et al., 2023)]. The remaining two classes, sampling
strategies and network construction methodologies, include drivers that researchers themselves create
when attempting to measure and model the structure of food webs. First, the sampling strategies
class consists of the study design decisions that shape web structure [e.g., amount of time (Kitching,
1987; Tavares-Cromar and Williams, 1996), and area (Galiana et al., 2022) sampled]. These design
decisions determine the particular suite of abiotic and biotic drivers acting on a community during
a study period and influence the likelihood of detecting a given species or interaction. Second, the
network construction methodologies class consists of the methodological approaches that influence
food web structure via the decisions researchers make when assembling a web [e.g., node taxon
resolution (Gauzens et al., 2013; Hemprich-Bennett et al., 2021; Bodner et al., 2022), the focal
organisms under study (Goldwasser and Roughgarden, 1993), and trophic interaction evidence (e.g.,
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faecal, stomach, and direct observation (Hutchinson et al., 2022))].
When the sampling strategies and network construction methodologies do not effectively capture

the species and trophic interactions of interest, the structure of an ecological community will be
misrepresented (Paine, 1988; Goldwasser and Roughgarden, 1993; Hodkinson and Coulson, 2004;
Pringle and Hutchinson, 2020; Carpentier et al., 2021). Even when the sampling and construction
methodology accurately and precisely capture the species and trophic interactions in a web,
inconsistencies in biological and environmental factors, sampling strategies, and network construction
methods across webs can cause issues when comparing their structure (Brimacombe et al., 2023)
[Figure 6.1]. While it is possible to mitigate some of these structural discrepancies via network
null models (Dormann et al., 2009; Farine, 2017), effective control relies on null models that are
carefully posed for each analyzed network (Artzy-Randrup et al., 2004). However, the creation of
appropriate null models is especially challenging when networks sourced from different books and
scientific articles [hereafter, publication(s)] are built using many different sampling strategies, and
network construction methodologies. For example, trophic interactions were measured by Valiela
(1974) using direct observations of feeding habits and through feeding trials in petri dish arenas for
their dung food webs, whereas Parker and Huryn (2006) used the gut contents of invertebrates and
vertebrates manually caught in a river for evidence of interactions in their aquatic webs (Figure 6.1).
Additionally, the careful tailoring of a null model, or other controls may depend on additional
information about each web which are very rarely reported (Poisot et al., 2016a; Kita et al., 2022);
for example, the amount of area and time used to delineate the respective community. In some
contexts, this information is perhaps even empirically unknowable given that many animals travel
(with their gut contents) across large areas, effectively “importing” interactions into what might
otherwise be small focal areas.

One way to assess the combined contributions of biological and environmental factors, sampling
strategies, and network construction methodologies on freely available food webs is by comparing
the structure of webs originally sourced from the same publication to webs originally sourced from
different publications. Often, multiple food webs are built by a single publication to evaluate the
structure of (i) the same community across time [e.g., Valiela (1974); Tavares-Cromar and Williams
(1996)], or (ii) different communities across space [e.g., Thompson and Townsend (2003, 2004)].
Since multiple webs from the same publication likely experience similar biological and environmental
factors, sampling strategies, and/or network construction methodologies, the structure of food webs
from the same publication are likely constrained to be similar (Closs and Lake, 1994), which could
cause issues when comparing webs from different publications. Potentially then, the frequency of
subgraphs (i.e., smaller webs defined by their configuration of nodes and links, see Figure 6.2) could
be over expressed in food webs sourced from the same publication as previously shown for bipartite
networks (Brimacombe et al., 2023). But unlike bipartite networks, links in food webs can connect
any nodes in a given network, producing a greater number of possible subgraphs. This characteristic
of food web structure could lead to different structural relationships when assessing the potential
effect of publication.

In a more focused perspective to the possible role of publication, if the network construction
methodologies class is a dominant driver of structure, as has been suggested for instance by Lin
et al. (2022), then webs built using similar methodology should be much more structurally similar
than a set of webs constructed using an assortment of construction methodologies. If so, then it
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may be best to only compare the structure of freely available food webs that were constructed
using similar methodologies, e.g., similar rules for assigning trophic links between nodes in webs.
One approach to test this is to compare the structural similarity of aquatic food webs constructed
via the commonly employed software tool Ecopath (Christensen and Walters, 2004) with those
constructed not with Ecopath, but with various different methods (e.g., via gut contents, reports
from the literature). Webs from Ecopath are developed using a mass-balance model to describe
the energy flow between compartments (e.g., species, functional groups), and require additional
empirical information including biomass of prey and predators from the desired community (Baeta
et al., 2011).

In this paper, we assess a collection of freely available food webs to identify and offer controls for
potential structural issues that might otherwise limit their comparability in studies seeking to deduce
ecological properties related to their structure. To this end, we compared the structural similarity in
defined groups of freely available food webs to determine if these sets of networks exhibit measurable
structural disparities. We compared the similarity within and between groups of webs defined by
their (i) ecosystem, (ii) publication source, and (iii) network construction methodology. With regards
to (i), if food webs sampled from the same ecosystem (i.e., aquatic, aquatic and terrestrial, and
terrestrial) are more structurally similar within their own ecosystem than across ecosystems, then
structural differences exist that are driven by their experienced biological and environmental factors.
For (ii), if webs originally sourced from the same publication have much higher structural similarity
than webs originally sourced from different publications, then there likely exists structural disparities
driven by the networks’ source publications that uniquely represents their network(s)’ experienced
biological and environmental factors, sampling strategies, and network construction methodologies.
For (iii), if aquatic food webs constructed via Ecopath are more structurally similar than aquatic
webs constructed via an assortment of other methodologies, then structural disparities are likely due
to differences in network construction methodologies.

6.3 Methods

6.3.1 Food webs

All freely available food webs—originally sourced from different publications—that we reused
for our own study came from four commonly cited network repositories [e.g., Carpentier et al.
(2021); Barbosa and Siqueira (2023)]: Global Web Database (www.canberra.edu.au/globalwebdb),
Web of Life (www.web-of-life.es), Interaction Web Database (www.ecologia.ib.usp.br/iwdb),
and GlobAL daTabasE of traits and food Web Architecture (https://idata.idiv.de/ddm/Data/
ShowData/283). While each web had a putatively associated publication from which it was originally
sourced that was provided by each repository, we discarded webs from our analyses when (i) further
investigation indicated that a given web may not actually have been from the associated publication,
or (ii) we could not gain access to the original publication to confirm it as the source. We then
manually inspected each food web’s nodes to correct typographical errors. We list all changes we
made to the food webs in S6.10 Appendix: Subsection S6.10.1.

In addition, we imposed structural requirements for food webs to be included in our analyses.
First, we included only multitrophic networks excluding bipartite networks. We excluded bipartite
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networks as they are likely to be structurally different due to the requirement that links can only exist
between nodes in the two different sets. Second, we chose to analyze food webs as undirected networks
to eliminate the potential for incorrectly labeled directed interactions from influencing our results.
Third, to reduce potential bias arising from using small networks (Michalska-Smith and Allesina,
2019), we included only webs with at least 10 total nodes, comprising at least five unique consumer
and resource nodes, respectively. Fourth, when a network was not fully connected, we only analyzed
the giant component [i.e., the largest connected component (Fortin et al., 2021)] of each food web
given the uncertainty with regards to how to analyze disconnected networks (Brimacombe et al.,
2022b, 2023). Under our criteria, of the 531 unfiltered food webs originally downloaded from the four
repositories, we were left with 274 webs. From these, 191 were originally sourced from 22 publications
that each provided multiple networks and 83 were sourced from one of the 83 publications that each
provided only a single network. See S6.10 Appendix: Table S6.7 for a list of all 274 food webs, and
their publication sources.

For each of the remaining 274 food webs obtained from the four aforementioned repositories, we
identified the type of ecosystem from which it was sampled. Specifically, we classified webs into one
of three ecosystem types (i) “aquatic”, which included marine, lakes, rivers, streams, and springs,
(ii) “aquatic and terrestrial” which included salt marshes, ponds, bogs, mudflats, pitcher plants, and
tree holes filled with water, or (iii) “terrestrial” which included sand dunes, forests, meadows, prairie,
and farmlands. In total, 167 webs were classified as “aquatic”, 28 webs were classified as “aquatic
and terrestrial”, and 79 webs were classified as “terrestrial”. Webs classified as “aquatic” were further
investigated to determine whether Ecopath was the method used in their construction.

6.3.2 Pairwise graphlet correlation distance-11 (GCD-11)

We evaluated food web structural similarity using pairwise graphlet correlation distance-11 [GCD-
11] (Yaveroğlu et al., 2014). We evaluated structural similarity of networks using GCD-11 because
of its previous success in both correctly identifying groups of networks based on structure
alone (Tantardini et al., 2019) and quantifying their structural differences (Brimacombe et al., 2023).
Briefly, this heuristic method characterizes a web’s structure by the correlations between the number
of times each node in the web occupies each of the 11 orbit positions in 6 graphlets (Figure 6.2)
and leverages this information to determine graphlet structural similarity between webs via orbit
correlation patterns. See S6.10 Appendix: Subsection S6.10.2 for a thorough and graphical example
of this method.

While motifs [e.g., Milo et al. (2002); Stouffer et al. (2007)] are another common subgraph
technique used to analyze a single web’s structure in ecology, GCD-11 is able to additionally use
graphlets to measure structural similarity across a set of webs without a network null model, and does
so with the highest success compared to other approaches (Tantardini et al., 2019). Current network
null models are challenging to use as benchmarks for empirical networks since the relationship
between statistical significance and biological importance is unclear, and minor modifications to
network null models can lead to large changes in significance (Artzy-Randrup et al., 2004).

Generally, there are two steps involved when evaluating structural similarity between a set of
webs using GCD-11. In step one, the structure of each web is characterized using graphlets, which
involves tallying the number of times each node in the web occupies each of the 11 orbit positions.
For a node, this is represented by a vector with 11 entries (called a graphlet degree vector-11) where
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each entry is the number of times the node occupies the respective orbit position. For a whole web
consisting of n nodes, this is represented by a n × 11 matrix containing orbit counts on each n

node. Next, Spearman’s correlation between all possible combinations of orbit counts in the web
is evaluated, i.e., correlations between each 11 column vectors in the n × 11 matrix. The resulting
output is a symmetric 11 × 11 matrix, referred to as a graphlet correlation matrix-11 (GCM-11),
where entry (i, j) is the respective correlation between orbit vector counts of i and j. Simply put,
these correlations are indicative of how nodes in the web act as interaction partners across graphlets.
In step two, the pairwise Euclidean distance between each web’s GCM-11 is evaluated:

pairwise GCD-11 (Ki,Kj) =

√√√√ 11∑
n=1

11∑
m=n+1

(
GCM-11Ki

(n,m)− GCM-11Kj
(n,m)

)2
, (6.1)

where GCM-11Ki(n,m) is the graphlet correlation matrix-11’s value of network Ki for orbits n and
m.

6.3.3 Assessing structural similarity using mean pairwise GCD-11

To quantify web structural similarity, we measured and compared the mean pairwise GCD-11
between defined sets of food webs (see S6.10 Appendix: Subsection S6.10.3 for more information).
Here, mean pairwise GCD-11 can be thought of as a measure of structural dispersion, where the
average of the pairwise GCD-11s between all webs in a given set of webs is computed (i.e., mean of
the pairwise GCD-11s given by eq. 6.1). We partitioned and evaluated similarity between: (i) webs
from the same ecosystem and webs from different ecosystems, (ii) webs from the same publication
source and webs each sourced from a different publication, and (iii) aquatic webs constructed using
Ecopath and aquatic webs constructed using any other method. With regards to (i), to ensure
that the ecosystem groupings of “aquatic”, “aquatic and terrestrial”, and “terrestrial” were not too
coarse, we also evaluated mean pairwise GCD-11 across aquatic food webs further identified as “lake”,
“marine”, “river”, “stream”, and “spring”. With regards to (ii), when publications provided multiple
networks, we evaluated only the mean pairwise GCD-11 between webs from the given publication,
and when publications provided only a single network each, we evaluated the mean pairwise GCD-
11 between all webs from this group. This subset of “one food web per publication” was chosen
as an imperfect null model to compare to, where the effect of publication was at least consistent
between each and every web since each web was sourced from a different publication. For visualization
purposes only, the pairwise GCD-11 between all food webs were mapped in two-dimensional visual
space using multidimensional scaling (Borg and Groenen, 2005).

We remark that no tests were performed to determine the statistical significance of differences
between mean pairwise GCD-11 values of the partitioned web groups, as our goal was to perform an
exploratory data analysis rather than hypothesis testing. Moreover, since our data were unbalanced
and partitioned groups had differences in the dispersion of their pairwise GCD-11 values as well
as likely differences in their centroid’s location (i.e., the location of the center of the dispersion of
networks for each group when projected in space), techniques like PERMANOVA would not be
useful. Furthermore, the data were pairwise dissimilarity values, and so statistical tests that use
measures of variances (or standard deviations), would not have been useful without first projecting
pairwise distances into an n-dimensional space. We do, however, provide measures of absolute
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differences (i.e., differences between mean pairwise GCD-11) to emphasize an average effect size
of our measurements, which is more informative than statistical significance. We also repeated all
measurements presented in the main text using median pairwise GCD-11, to help ensure that our
results were not affected by outliers [see S6.10 Appendix: Subsection S6.10.6].

6.3.4 Network size

Since food web size (i.e., number of nodes) is regarded as a metric of sampling effort or
intensity (Martinez et al., 1999), accounting for it may be necessary in web analyses (Brimacombe
et al., 2022a). We tested to ensure neither web size nor the variability in web size influenced pairwise
GCD-11 measurements. In other words, we wanted to make sure our results were not simply an
artefact of sampling effort or intensity. To do so, we compared the relationship between mean
pairwise GCD-11 and (i) food web size; and (ii) variability in food web size. See S6.10 Appendix:
Subsection S6.10.7 for more information.

6.4 Results

There were no apparent differences between pairwise GCD-11s (Figure 6.3) across ecosystems’ food
webs to suggest that specific biological and environmental factors associated with ecosystem type
coherently influenced web structure. Food webs representing “aquatic” or “aquatic and terrestrial”
were found to be comparatively structurally similar having a mean pairwise GCD-11 of 3.07, and
3.04, respectively (Table 6.1). Food webs representing “terrestrial” ecosystems were found to be more
structurally similar than webs from “aquatic” and “aquatic and terrestrial”, having a mean pairwise
GCD-11 of 2.41. However, this lower mean pairwise GCD-11 between “terrestrial” food webs was
likely driven by similarities between webs sourced exclusively from Digel et al. (2014) (n = 48)
as removing these webs increased the mean pairwise GCD-11 of “terrestrial” food webs to 3.53.
Given that the mean pairwise GCD-11 between webs of different ecosystems were similar to webs
within the same ecosystems (3.11 for “aquatic” and “aquatic and terrestrial”, 3.08 for “aquatic” and
“terrestrial”, 2.96 for “aquatic and terrestrial” and “terrestrial”), ecosystem type—and hence a suite
of shared biotic or abiotic drivers—appeared to have no measurable effect on food web structure.
Similar patterns were also found when comparing webs from specific types of aquatic systems: “lake”,
“marine”, “river”, and “stream” (S6.10 Appendix: Subsection S6.10.5). Note that “spring” aquatic food
webs were omitted from this analysis since only a single spring food web was identified and measures
of structural similarity requires ≥ 2 webs.

In contrast, publication source had a much stronger effect on web structure. The multiple
food webs that were sourced from the same publication were on average much more structurally
similar—by a factor of about two—than webs sourced from publications that each provided only
a single network (i.e., mean pairwise GCD-11: 1.51 vs. 3.13 respectively, Table 6.2). Recall that
webs sourced from publications that each produced only a single network were used as an imperfect
control to capture a possible publication effect on food web structure. Interestingly, over 85% of
the structural similarities measured between food webs that shared a publication source in this
study had a pairwise GCD-11 ≤ 2.5. In comparison, only about 30% of the structural similarities
of food webs from publications that produced only a single network and 30% of the structural
similarities of all other possible pairwise distances between webs (e.g., between two food webs from
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two different publications that produced multiple networks) had pairwise GCD-11 ≤ 2.5 (S6.10
Appendix: Subsection S6.10.4). Moreover, the majority (i.e., about 62%) of the smallest pairwise
GCD-11s (i.e., those ≤ 1.5) measured across all food webs were only between those webs sourced from
the same publication that produced multiple networks, despite only making up 7% of total pairwise
distances. When mean pairwise GCD-11 measures were averaged by decade, food webs sourced from
publications that produced only a single network all had comparatively large mean pairwise GCD-11
over time (i.e., > 2.45; teal solid lines/points in Figure 6.4). However, considering only webs sourced
from publications that produced multiple networks, webs from the same publication published after
the 1990s were on average about 1.6 times more structurally similar than webs published before or
during the 1990s (mean pairwise GCD-11 of 1.28 vs. 2.07, respectively, Table 6.2, and blue dashed
line/points in Figure 6.4).

Within “aquatic” food webs, there was no strong evidence to suggest that network construction
methodology (i.e. Ecopath) coherently influenced web structure. Although the 28 “aquatic” webs that
were constructed using Ecopath had a minimally lower mean pairwise GCD-11 than all 167 “aquatic”
food webs (2.55 vs. 3.07, respectively), this moderate difference was likely due to a publication effect,
i.e., four publications contributed 13 of the 28 Ecopath webs. Once we removed this publication effect,
the mean pairwise GCD-11 between “aquatic” webs constructed via Ecopath increased to 2.78. This
structural similarity was only marginally improved upon compared to the mean pairwise GCD-
11 of 3.02 found between “aquatic” food webs not constructed via Ecopath (see S6.10 Appendix:
Subsection S6.10.8).

6.5 Discussion

Using a collection of 274 commonly reused and freely available food webs from four repositories,
we found food web structure to be strongly determined by the publication source of networks. This
suggests a significant lack of comparability among food webs sourced from different publications,
due to cryptic publication effects embedded within the structure of all webs. Consequently, caution
should be exercised when adopting food webs sourced from different publications to infer structural
properties about their respective ecological communities.

Although we expect biological and environmental factors to have a strong influence on species
interactions [e.g., Abdala-Roberts et al. (2019); Brose et al. (2019)], we found no evidence that
ecosystem type coherently influenced the structure across all freely available food webs. Specifically,
the structural similarity between webs from the same ecosystem (i.e., “aquatic”, “aquatic and
terrestrial”, and “terrestrial”) were close to that found between webs from different ecosystems [e.g.,
between “aquatic” and “aquatic and terrestrial”] (Table 6.1). The absence of increased structural
similarity among webs from the same ecosystem may be attributed to the fact that webs were
built using distinctly diverse sampling strategies and network construction methodologies. In the
“aquatic” ecosystem, for example, Peterson (1979) sampled the aquatic environment using transects
and based feeding interactions on field observations, reports in the literature, and feeding responses
in an aquarium, whereas Parker and Huryn (2006) sampled the aquatic environment using 100-meter
study reaches, and based feeding interactions on only the gut contents of caught invertebrates and a
single fish species. While we recognize that our reported ecosystem type is a coarse categorization,
we also did not find improved structural similarity within the more precise subsets of “aquatic” food
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webs identified as sampled from “lake”, “marine”, “river”, or “stream” ecosystems (S6.10 Appendix:
Subsection S6.10.5). When limiting webs to a single ecosystem type and using only those constructed
with the same methodology (i.e., Ecopath), we still only observed a marginal increase in their degree
of structural similarity (S6.10 Appendix: Subsection S6.10.8). Hence, neither collections of freely
available webs from the same ecosystem nor freely available webs from the same ecosystem and
built using the same network construction methodology appear to substantively influence structure
coherently.

From the outset, it may have been obvious that publication source would have strong influence
on structure [e.g., Closs and Lake (1994)], but it was less clear that this effect would mask other
drivers that we could detect across all freely available webs (Figure 6.3). We are not suggesting
that biological or environmental factors do not shape food web structure. Rather, biological or
environmental factors paired with sampling strategies, and network construction methodologies are
holistically, uniquely, and cryptically captured in a publication’s food web(s) leaving something like a
“structural fingerprint” within each web, which make comparing networks from different publications
difficult. The reason for this is made plainly evident when comparing webs sourced from Valiela
(1974) and Parker and Huryn (2006), wherein the former is only concerned with the daily arthropod
interactions found in bovine dung, while the later is mainly concerned with the interactions between
aquatic invertebrates and a single fish species across a month (Figure 6.1). In this light, it is almost
trivial that webs sourced from the same publication appeared about (i) two-times more structurally
similar than either webs from the same ecosystem or webs each sourced from different publications
(Tables 6.1 and 6.2, respectively), and (ii) 1.84-times more structurally similar than aquatic webs
constructed using Ecopath (S6.10 Appendix: Subsection S6.10.8). The same strong publication effect
we found here also conforms with that previously found by Brimacombe et al. (2023), where bipartite
networks from the same publication were also about 2-times more structurally similar to each other
than bipartite networks each sourced from different publications. It is important to note that while
we found multiple webs sourced from the same publication to be structurally unique (i.e., had a
publication’s “structural fingerprint”), webs sourced from publications that each produced only a
single web also have their own publication’s structural fingerprint, but it could not be revealed using
our methods. Like drawing a line requires at least two points, we needed at least two food webs
sourced from the same publication to deduce that publication’s structural fingerprint.

We are not the first to recognize the issues with reusing collections of freely available food
webs. In fact, guided by the many ways food webs can be structured differently, researchers in
the 1980s/90s challenged the very utility of freely available webs as data for meaningfully testing
ecological hypotheses (Dunne, 2006; Pringle and Hutchinson, 2020). Recently, studies have begun to
reveal some of these previously outlined drawbacks. In particular, quantitative measurements have
begun to test how differences in sampling strategies and network construction methodologies influence
network structure, including the amount of area sampled (Galiana et al., 2022), amount of sampling
effort (Bersier et al., 1999; Banašek-Richter et al., 2004), and node taxon resolution (Hemprich-
Bennett et al., 2021). Altogether, these findings—along with our quantitative results—highlight the
many complex drivers shaping food web structure that can make network comparison difficult. This
is likely the reason why many studies that reuse collections of freely available bipartite networks
built by many different researchers often do not find significant relationships in network structure
across space (Brimacombe et al., 2022b).
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As far as we know, we are the first to have found that structural similarity between freely available
food webs sourced from the same publication has generally increased across time (blue dashed line
of Figure 6.4). This somewhat agrees with the assertion that networks published before 1990 may
not have been built with the intention of evaluating structure (Carpentier et al., 2021). Although,
we find this true only of publications that produce multiple webs after the 1990s, and not for those
webs each sourced from a unique publication (teal solid line of Figure 6.4). The increase in web
structural similarity within a given publication may be due to the recommendations made in the
late 1980s and early 1990s to improve the ways in which food webs are built [e.g., Lawton (1989);
Winemiller (1990); Cohen et al. (1993)].

The cryptic and nonlinear ways the classes of structure act holistically within a publication’s
own food web(s) likely make it erroneous to simply control for publication via a random effect and
then deem networks comparable. Since each freely available web is built by researchers for their
own motives (Goldwasser and Roughgarden, 1993), the influence of each one of the three classes
of structure varies substantially between publications. Hence, simply controlling for publication is
unlikely to remedy the many nonlinear ways webs can be structurally different within and across
publications. Importantly, it is also not possible to control for publication as a random effect in
cases where food webs were each sourced from a single publication, which comprise a large portion
of the freely available food webs (i.e., 83 of the 274 food webs in our study). In such scenarios, each
publication grouping would contain only a single data point (i.e., food web) making it impossible to
assess relationships between network structure and explanatory variables. Moreover, attempting to
control for differences in the three classes that influence structure between webs is made difficult,
if not impossible, by the lack of standardizations taken across publications (Cohen et al., 1993;
Vázquez et al., 2022; Borrelli et al., 2023). The network metadata that would otherwise indicate
how the different classes of structure influence each food web—e.g., the amount of time or area
used to encapsulate an ecological community as a network (i.e., sampling strategies), the biological
evidence used to define links between nodes (i.e., network construction methods), or the type of
environment the ecological community is exposed to (i.e., biological and environmental factors)—
are almost always absent (Poisot et al., 2016a; Kita et al., 2022).

We recognize that our findings regarding structural similarity are not infallible, but we believe
our conclusions regarding publication’s effect on freely available food web structure is robust to
variations in selected networks. First, while networks with weighted links [e.g., biomass, frequency
of interaction (Cohen et al., 1993; Guimarães Jr., 2020)] have been touted as reflecting a more
realistic ecological community (Bersier et al., 2002; Banašek-Richter et al., 2004; Vázquez et al.,
2022), we suspect that using weighted webs would result in similar patterns as our results with binary
webs. As the litany of weighted interaction definitions may render a publication’s web(s) even more
unique by the chosen interaction definition, publication is likely to constrain its own webs’ structure
more when building weighted food webs. Second, while reducing the set of webs to only those well
sampled or controlling for sampling effort has been recommended (Winemiller, 1990; Goldwasser
and Roughgarden, 1993; Martinez et al., 1999), we believe that implementing this restriction is
also unlikely to eliminate publication’s effect on structure. Since webs from the same publication
have been built with similar approaches, these webs would have also been built with similar sampling
effort. It follows that if webs with high sampling effort were sourced from publications that produced
multiple webs, all other webs from those publications would also have high sampling effort, and thus
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the publication effect would still be present. Third, although we did not use directed subgraphs (i.e.,
graphlets) to analyze food webs as is often done, e.g., Borrelli (2015); Cirtwill and Wootton (2022),
we do not believe doing so would fundamentally alter our results. We hypothesize that including
direction in the edges of graphlets would reveal more structural discrepancies between publications’
network(s), and thus make them more unique and difficult to compare. For example, a publication’s
web consisting of a single top predator would likely become apparent and identifiable from a different
publication’s web that has many top predators, both of which can be entirely dependent upon the
goals of the researchers building the networks rather than the biology of the system itself, e.g., the
difference between the food webs from (Parker and Huryn, 2006) with a single top fish predator
and (Valiela, 1974) with many top arthropod predators.

Looking forward, there are opportunities to improve our access to a greater number of freely
available empirical food webs built by different researchers that are also less problematic to compare.
The most ambitious suggestion involves a collaborative effort, in which a global set of food webs is
built in a consistent and standardized manner by different researchers across the globe (Winemiller,
1990; Cohen et al., 1993). Currently, much of the structure of freely available species interaction
networks is a blackbox; a result of different combinations of the drivers from the three different
classes of structure applied in unbeknownst ways. Having available many food webs built using
consistent and standardized protocols would allow for more effective comparison of their structure.
A more immediate and achievable remedy is for authors of food webs to include as much information
about the drivers of structure that each web experiences in their metadata (Poisot et al., 2016b; Kita
et al., 2022). As users of free data, we could then more easily decide which sets of webs are comparable
or attempt to control for these differences in reported structural drivers. It is also perhaps possible
to improve existing webs using inferential methods. While these sorts of approaches are novel, they
may be able to overcome sampling bias and data deficiency issues that plague species interaction
networks by predicting interactions in cases where no such interaction has been recorded using
data from other networks (Poisot et al., 2023). Of course, these methods still require validation to
determine if predicted interactions are plausible.

6.6 Conclusion

In our study, we demonstrate that the structure of food webs is primarily defined by each web’s
publication source. This strong publication effect likely arises since webs are exposed to their
publication’s distinct combinations of structural drivers that can be broadly categorized into
three classes: biological and environmental factors, sampling strategies, and network construction
methods. Unfortunately, simply controlling for the publication source of each web is insufficient
when comparing webs sourced from different publications since the real structural drivers (i.e., of
the three aforementioned classes) are likely holistically acting on the structure of webs in nonlinear
ways. We suggest that one of the simplest approaches to improve web comparability is for builders
of a publication’s web(s) to report in metadata the different ways the three classes of structure
influence each food web. In this way, researchers that adopt freely available webs can attempt to
control for the nonlinear and interacting ways in which the different structural drivers may act.
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6.7 Data and code availability

All data and code to reproduce our results are available at: https://github.com/Chrisb590/

On-the-nature-of-structure-in-open-empirical-food-webs.
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6.8 Figures
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• Daily food webs
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Biological and 

environmental factors that 

alter a community’s 

network structure

• Manure from cattle in Ithaca, New York
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taxon resolution of genus, species, and 

very general (e.g., terrestrial insects)

• Mainly concerned with S. malma, and 

invertebrates feeding interactions

• Monthly food webs

Sampling strategy decisions that affect 

which biological factors are observed 

during in situ sampling

• Invertebrates obtained via Surber sampler

• S. malma obtained via minnow trap

• Gut contents (feeding interactions) of 

invertebrates from those caught on June 25 

and 4 August, 2002

• S. malma gut contents (feeding interactions) 

from those caught in late June and late July, 

2000

(A)

(B)

Terrestrial insects

Salvelinus malma

ProsimuliumWinged aquatic adult

Diamesa

Figure 6.1. Example of how differences in the three classes of structure (i.e., biological and
environmental factors [purple], sampling strategies [orange], and network construction methodologies
[aqua]) cause food webs sourced from (A) Valiela (1974), and (B) Parker and Huryn (2006) to be
very structurally different. Illustration reflects only a subset of nodes from each web (WEB200_ and
WEB274_, respectively, from our food webs dataset, see S6.10 Appendix: Table S6.7).
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Figure 6.2. The six graphlets (Gi) consisting of two-to-four nodes, and their respective automorphism
orbits (“orbits”, nodes that are numerically labelled and outlined in red). Each unique shade in a
graphlet corresponds to an orbit, which are nodes in the subgraph that are topologically identical.
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Figure 6.3. Multidimensional scaling of the pairwise graphlet correlation distance–11 (GCD-11)
between (A) all food webs from publications that only produced a single network (n = 83) and (B)
all food webs from publications that produced multiple networks (n = 191). Each symbol in the plot
is a single food web, where colour reflects the respective food web’s source publication grouping,
and shape reflects the ecosystem type each food web represents. See S6.10 Appendix: Figure S6.7
for the distribution of all pairwise GCD-11s projected here. Note: this visual mapping is only an
approximation of the high-dimensional true pairwise GCD-11s between all food webs.
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6.9 Tables

Table 6.1. Mean pairwise graphlet correlation distance-11 (GCD-11) between food webs sampled from
the same type of ecosystem or different type of ecosystem. Number of webs from each ecosystem are
identified in parentheses. “Aquatic” food webs include those from marine, lakes, rivers, streams, and
springs, “aquatic and terrestrial” food webs include those from salt marshes, ponds, bogs, mudflats,
pitcher plants, and tree holes filled with water, and “terrestrial” food webs include those from sand
dunes, forests, meadows, prairie, and farmlands.

Aquatic Aquatic and terrestrial Terrestrial
Aquatic 3.07 (n = 167)
Aquatic and terrestrial 3.11 3.04 (n = 28)

Terrestrial 3.08 2.96 2.41 (n = 79)
3.53 (n = 31)†

†After removing all n = 48 “terrestrial” food webs sourced from Digel et al. (2014).
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Table 6.2. Mean pairwise graphlet correlation distance-11 (GCD-11) between food webs sourced from
the same publication grouping. Multiple food webs sourced from the same publication are termed
“multiple food webs per publication” and food webs sourced from publications that each produced
only a single network are termed “one food web per publication”. See S6.10 Appendix: Table S6.6
for a list of publications that provided more than one web and each publication’s mean pairwise
GCD-11.

Publication grouping Mean pairwise
GCD-11

Number of
food webs

Number of
publications

One food web per publication 3.13 83 83
Multiple food webs per publication 1.51‡ 191 22
Multiple food webs per publication
(before or during 1990s) 2.07‡ 56 7

Multiple food webs per publication
(after 1990s) 1.28‡ 135 15

‡Calculated by taking the average of the mean pairwise GCD-11s between food webs
from the same publication, weighted by the number of networks produced by each
publication.
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S6.10 Appendix

S6.10.1 Errors in food webs

Here, we provide the changes we made to the collected binary webs’ adjacency matrices (Table S6.1),
where rows and columns correspond to biological entities.
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Table S6.1. Changes to food web adjacency matrices. Although not listed here, it is important to
ensure no extra white space characters are included either in front or behind column/row string
names, otherwise R (R Core Team, 2023) will interpret these names as different nodes if there are
also rows/columns with the same string name but without additional white space characters.

Network name Changes made Network result
WEB33_ Row labelled “Gyraulus costulatus\”

was merged with the already present
row labelled “Gyraulus costulatus”.

Reduced network
size by 1 node.

WEB41_ 2 rows and 2 columns labelled “tuna”
(different interaction configurations for
each row and each column) were
merged into a single row and a single
column, respectively.

WEB214_ Row labelled “Eukieffidriella ‘naonella’
type” was merged with the already
present row labelled “Eukiefferiella
‘naonella’ type”.

Reduced network
size by 1 node.

2 rows labelled “Melosira italica”
(different interaction configurations for
each row) were merged into a single
row.

WEB215_ Row labelled “Eukieferiella
pseudomontana” was merged with the
already present row labelled
“Eukiefferiella pseudomontana”.

Reduced network
size by 1 node.

WEB217_ Row labelled “Eukieffidrella
pseudomontana” was merged with the
already present row labelled
“Eukiefferiella pseudomontana”.

Reduced network
size by 1 node.

Row labelled “Fatigia pele” was merged
with the already present row labelled
“Fattigia pele”.

Reduced network
size by 1 node.

WEB218_ Row labelled “Austrosimulium
austranse” was merged with the
already present row labelled
“Austrosimulium australense”.

Reduced network
size by 1 node.

Row labelled “Eukiefidrella brundini”
was merged with the already present
row labelled “Eukiefferiella brundini”.

Reduced network
size by 1 node.

Row labelled “Eukieflidrella brundini”
was merged with the already present
row labelled “Eukiefferiella brundini”.

Reduced network
size by 1 node.

Table continued . . .
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. . . Continuation of Table S6.1.
Network name Changes made Network result
WEB219_ Row labelled “Pycnocntria evecta” was

merged with the already present row
labelled “Pycnocentria evecta”.

Reduced network
size by 1 node.

Row labelled “Zelanoperla sp.” was
merged with the already present row
labelled “Zelandoperla sp.”.

Reduced network
size by 1 node.

WEB220_ Row labelled “Eukieflidriella brundini”
was merged with the already present
row labelled “Eukiefferiella brundini”.

Reduced network
size by 1 node.

Row labelled “Eukieffidriella brundini”
was merged with the already present
row labelled “Eukiefferiella brundini”.

Reduced network
size by 1 node.

Row labelled “Tiphobiosis montana”
was merged with the already present
row labelled “Tiphobiosis montana”.

Reduced network
size by 1 node.

Row labelled “Aphrophila
neozelandicus” was merged with the
already present row labelled
“Aphrophila neozelandica”.

Reduced network
size by 1 node.

WEB221_ Row labelled “Aotepsyche” was merged
with the already present row labelled
“Aoteapsyche”.

Reduced network
size by 1 node.

WEB223_ Row labelled “Cymbella kappi” was
merged with the already present row
labelled “Cymbella kappii”.

Reduced network
size by 1 node.

WEB224_ Row labelled “Stictoclcaius” was
merged with the already present row
labelled “Stictocladius”.

Reduced network
size by 1 node.

WEB236_ 2 rows labelled “Zelandoperla agnetis
(McLellan)” (different interaction
configurations for each row) were
merged into a single row.
Row labelled “Eukiefidrella” was
merged with the already present row
labelled “Eukiefferiella”.

Reduced network
size by 1 node.

Row labelled “Eukiefiriella” was merged
with the already present row labelled
“Eukiefferiella”.

Reduced network
size by 1 node.

Table continued . . .
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. . . Continuation of Table S6.1.
Network name Changes made Network result
WEB236_ Row labelled “Stictoclcaius” was

merged with the already present row
labelled “Stictocladius”.

Reduced network
size by 1 node.

2 columns labelled “Zelandoperla
agnetis (McLellan)” (different
interaction configurations for each
column) were merged into a single
column.

WEB238_ 2 rows labelled “Achnanthes linearis”
(different interaction configurations for
each row) were merged into a single
row.

WEB240_ 2 rows labelled “Achnanthes linearis”
(different interaction configurations for
each row) were merged into a single
row.

WEB244_ 2 rows labelled “Achnanthes linearis”
(different interaction configurations for
each row) were merged into a single
row.

WEB246_ 2 rows labelled “Achnanthes linearis”
(different interaction configurations for
each row) were merged into a single
row.

WEB257_ Row labelled “Amphithoe valida” was
merged with the already present row
labelled “Ampithoe valida”.

Reduced network
size by 1 node.

WEB258_ Row labelled “Amphithoe valida” was
merged with the already present row
labelled “Ampithoe valida”.

Reduced network
size by 1 node.

WEB259_ Row labelled “Amphithoe valida” was
merged with the already present row
labelled “Ampithoe valida”.

Reduced network
size by 1 node.

WEB260_ Row labelled “Amphithoe valida” was
merged with the already present row
labelled “Ampithoe valida”.

Reduced network
size by 1 node.

WEB262_ Row labelled “Glicera tridactyla” was
merged with the already present row
labelled “Glycera tridactyla”.

Reduced network
size by 1 node.

Table continued . . .
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. . . Continuation of Table S6.1.
Network name Changes made Network result
WEB320_ Rows labelled “Import”, “Sum”, and

“(1-Sum)” were removed.
Reduced network
size by 3 nodes.

WEB321_ Rows labelled “Import”, “Sum”, and
“(1-Sum)” were removed.

Reduced network
size by 3 nodes.

WEB322_ Rows labelled “Import”, “Sum”, and
“(1-Sum)” were removed.

Reduced network
size by 3 nodes.

WEB323_ Row labelled “Import” was removed. Reduced network
size by 1 node.

WEB324_ Rows labelled “Import”, “Sum”, and
“(1-Sum)” were removed.

Reduced network
size by 3 nodes.

WEB338_ Rows labelled “Import” and “Discard”
were removed.

Reduced network
size by 2 nodes.

WEB345_ 2 rows and 2 columns labelled
“Medium-sized ciliates (herbivore)”
(different interaction configurations for
each row and each column) were
merged into a single row and a single
column, respectively.

WEB348_ Row labelled “Polychates” was merged
with the already present row labelled
“Polychaete”.

Reduced network
size by 1 node.

WEB350_ Row labelled “Polychates” was merged
with the already present row labelled
“Polychaetes”.

Reduced network
size by 1 node.

2 rows labelled “Ostracods” (different
interaction configurations for each row)
were merged into a single row.

WEB352_ Row labelled “Import” was removed. Reduced network
size by 1 node.

WEB353_ Row labelled “Import” was removed. Reduced network
size by 1 node.

WEB359_ 11 rows and 11 columns labelled
“unknown bacterium” (different
interaction configurations for each row
and column) were merged into a single
row and a single column, respectively.

Table continued . . .
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. . . Continuation of Table S6.1.
Network name Changes made Network result
WEB359_ 12 rows and 12 columns labelled

“unknown protozoan” (different
interaction configurations for each row
and column) were merged into a single
row and a single column, respectively.
3 rows and 3 columns labelled
“Sphingomonas” (different interaction
configurations for each row and
column) were merged into a single row
and a single column, respectively.
3 rows and 3 columns labelled
“Flectobacillus” (different interaction
configurations for each row and
column) were merged into a single row
and a single column, respectively.
2 rows and 2 columns labelled
“Chromobacterium” (different
interaction configurations for each row
and column) were merged into a single
row and a single column, respectively.

Carpinteria_ 2 rows and 2 columns labelled
“eugregarine” (different interaction
configurations for each row and each
column) were merged into a single row
and a single column, respectively.

Beaver_Lake_ Row and column labelled “Salmo rutta”
was corrected to “Salmo trutta”.

Kongsfjorde_ Row labelled “Eumicotremus derjugini”
was merged with the already present
column labelled “Eumicrotremus
derjugini”.

Reduced network
size by 1 node.

mown_Clmown1_ Changed row and column labelled
“Edaphus_blÅ¸hweissi” to “Edaphus”.

mown_Scmown2_ Changed row and column labelled
“Edaphus_blÅ¸hweissi” to “Edaphus”.

not_mown_ClControl1_Changed row and column labelled
“Edaphus_blÅ¸hweissi” to “Edaphus”.

not_mown_ScControl1_Changed row and column labelled
“Edaphus_blÅ¸hweissi” to “Edaphus”.

Table continued . . .
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. . . Continuation of Table S6.1.
Network name Changes made Network result
not_mown_ScControl2_Changed row and column labelled

“Edaphus_blÅ¸hweissi” to “Edaphus”.
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S6.10.2 Graphlet correlation distance-11 example

Given a food web, such as “Network 1” depicted in Figure S6.2, we first count the number of times
nodes occupy orbit positions (Figure S6.1). Specifically, the number of times nodes occupy the orbits
of graphlets G1 (orbit 1), G2 (orbits 2 and 3), G3 (orbits 4 and 5), G4 (orbits 6 and 7), G5 (orbit
8), and G6 (orbits 9, 10, and 11). In tallying the number of times a node occupies different orbit
positions, the graphlet degree vector-11 for a node is constructed. In Figure S6.2, we provide the
graphlet degree vector-11 for “node A” of Network 1.

Once graphlet degree vector-11s for each node in a food web are determined, the graphlet
correlation matrix-11 can be assembled. In doing so, all possible Spearman’s correlations between
the number of times all nodes in a food web occupy specific orbits are evaluated (see the highlighted
green boxes in Figure S6.3 as an example of a single Spearman’s correlation for Network 1).

By computing the pairwise Euclidean distances between graphlet correlation matrix-11s, we can
obtain an estimate of the topological differences between food webs in a given set. An example of a
single pairwise Euclidean distance between two graphlet correlation matrices (i.e., of two networks
or food webs) is shown in Figure S6.4.

Using all pairwise Euclidean distances between food webs, we can visualize their dissimilarity by
projecting their distances using multidimensional scaling (MDS; see Figure S6.5).
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Figure S6.1. The six graphlets (Gi) consisting of two-to-four nodes, and their respective orbits (i.e.,
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Figure S6.2. Example calculation of the counts for orbit 2 in a graphlet degree vector-11 for node A
of Network 1.
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S6.10.3 Example of mean pairwise GCD-11 as a dispersion metric

In Figure S6.6, we provide a toy example of how the mean pairwise GCD-11 between defined sets
of food webs (i.e., green circles and purple squares) can be used as a metric of dispersion within
those sets of webs. We note that the distances represented in the multidimensional scaling plot of
Figure S6.6 are only a 2-dimensional best approximation to the true pairwise distances between all
7 food webs using pairwise GCD-11s (as calculated via eq. 6.1). We used the “true” pairwise GCD-
11s between food webs (i.e., the pairwise input data used to perform a multidimensional scaling)
throughout the manuscript for all quantitative measurements.
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Figure S6.6. Example multidimensional scaling (MDS) [plot on left] of all pairwise graphlet
correlation distance-11s (GCD-11) [matrix on right] between food webs (n = 7) mapped in
2-dimensional space. Lines are drawn on the MDS to convey the pairwise distances between
symbols/webs (but distances are obtained from the matrix). Each symbol in the plot is a single
food web, where colour and shape reflects the respective food web’s grouping. Distances between
webs of opposite groupings are not drawn on plot for the sake of simplicity.
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S6.10.4 Distribution of all pairwise GCD-11 values

In Figure S6.7, we provide the distribution of all n = 37401 pairwise GCD-11 values between the
274 food webs used in this study, where total pairwise distances are defined by

number of networks · (number of networks − 1)

2
=

274 · 273
2

= 37401 . (S6.1)

The total number of pairwise distances between: (i) the 83 food webs sourced from a publication that
produced only a single network was n = 3403, (ii) the 191 food webs sourced from 22 publications
that each produced multiple networks was n = 2487, and (iii) all other webs (i.e., between two food
webs sourced from two different publications that produced multiple networks or a food web from a
publication that produced only a single network and a food web from a publication that produced
multiple networks) was n = 31511.

Strikingly, the low pairwise GCD-11s between food webs analyzed in our study were dominated
by those webs that shared a publication source. In particular, the majority (i.e., about 62%) of the
smallest pairwise GCD-11s (i.e., those ≤ 1.5) measured between all food webs were only between
those webs sourced from the same publication that produced multiple networks, despite only making
up 7% of the total pairwise distances (i.e., 2487/37401). Moreover, 87% of all pairwise GCD-11s
recorded between food webs that shared a publication source were ≤ 2.5. In comparison, only about
30% and 27% of food webs from publications that produced only a single network, and all other
pairwise distances between webs, were ≤ 2.5.

These results show that it would be extremely difficult—if not impossible—to categorize food
webs using the same number of webs (n = 191) to maximize structural similarity, other than by the
publication groupings presented in this manuscript (i.e., food webs sourced from the same publication
that produced multiple networks). Given that the majority of small pairwise GCD-11s are already
categorized as food webs that share a publication source, there are very few pairwise GCD-11s
that remain which could be categorized to further maximize structural similarity. Moreover, these
categorizations would need to be based on a priori rules rooted in ecological theory, rather than
categorizing food webs simply based on small GCD-11s.
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S6.10.5 No substantial evidence of increased structurally similarity
between the “aquatic” food webs of “lake”, “marine”, “river”, and
“stream”

Here, we test whether “aquatic” food webs—when further identified down to either “lake”, “marine”,
“river”, and “stream”—have increased structurally similarity (i.e., smaller mean pairwise GCD-11).
Note: we omitted the single food web sampled from a “spring” ecosystem (i.e., WEB45_) in this
analysis, since it is impossible to evaluate mean pairwise GCD-11 with only a single network.

S6.10.5.1 Analysis

Since food webs sourced from the same publication are already known to be highly similar to each
other (i.e., mean pairwise GCD-11 of 1.51 [Table 6.2]), we removed the publication effect from this
analysis by only using a single web from a publication that provided multiple networks. As a means
of reducing the burden of sampling across all possible different and unique combinations of taking
a single web from each of the publications that provided multiple networks for the “aquatic” food
web ecosystem, we simply randomly chose a single web from each of these publication. We refer
to a collated combination of randomly chosen webs (each one from a unique publication source
that provided multiple networks), and all webs sourced from publications that each provided only
a single network, as a single realization. When analyzing the mean pairwise GCD-11 between food
webs from the same “aquatic” ecosystem (e.g., “lake”), we averaged all mean pairwise GCD-11 values
across 200 realizations between webs only from the same “aquatic” ecosystem. When analyzing the
mean pairwise GCD-11 between food webs across “aquatic” ecosystems (e.g., “lake” and “marine”),
we averaged all mean pairwise GCD-11 values across 200 realizations between food webs only from
the two different “aquatic” ecosystems. Below we list the number of food webs in a realization from
each of these “aquatic” ecosystems.

S6.10.5.2 Data

Of the “lake” food webs available from our dataset, 7 webs were sourced from publications that each
provided only a single network, while 49 webs were sourced from 6 publications that each provided
multiple networks (see Table S6.7 for list). Specifically, 3 webs were sourced from Angelini et al.
(2013), 2 webs were sourced from Stewart and Sprules (2011), 2 webs were sourced from Alcorlo
et al. (2001), 2 webs were sourced from Cohen et al. (2003), 4 webs were sourced from Fryer (1959),
and 36 webs were sourced from Havens (1992). A given realization then consisted of 13 “lake” food
webs.

Of the “marine” food webs available from our dataset, 27 webs were sourced from publications
that each provided only a single network, while 8 webs were sourced from 2 publications that each
provided multiple networks (see Table S6.7 for list). Specifically, 6 webs were sourced from Baeta
et al. (2011), and 2 webs were sourced from Menge and Sutherland (1976). A given realization then
consisted of 29 “marine” food webs.

Of the “river” food webs available from our dataset, 6 webs were sourced from publications that
each provided only a single network, while 2 webs were sourced from 1 publication that provided
multiple networks (see Table S6.7 for list). Specifically, 2 webs were sourced from Angelini et al.
(2006). A given realization then consisted of 7 “river” food webs.
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Of the “stream” food webs available from our dataset, 11 webs were sourced from publications that
each provided only a single network, while 56 webs were sourced from 7 publication that provided
multiple networks (see Table S6.7 for list). Specifically, 3 webs were sourced from Closs and Lake
(1994), 9 webs were sourced from Layer et al. (2010), 4 webs were sourced from O’Gorman et al.
(2019), 4 webs were sourced from Parker and Huryn (2006), 2 webs were sourced from Tavares-
Cromar and Williams (1996), 4 webs were sourced from Thompson and Townsend (2003), and 30
webs were sourced from Thompson and Townsend (2004). A given realization then consisted of 18
“stream” food webs.

S6.10.5.3 Findings

Altogether, there is no substantial evidence that “aquatic” food webs further identified to “lake”,
“marine”, “river”, or “stream” are more structurally similar (i.e., smaller mean pairwise GCD-
11 between webs from the same “aquatic” ecosystem) [Table S6.2]. While “lake” food webs were
moderately more structurally similar to each other (i.e., mean pairwise GCD-11: 2.58)—as compared
to any other non-publication type grouping studied for this paper—food webs sourced from the same
publication were much more structurally similar to each other (i.e., mean pairwise GCD-11: 1.51),
especially those published after the 1990s (i.e., mean pairwise GCD-11: 1.28) [Table 6.2]. Moreover,
the other three types of “aquatic” food webs had considerably larger mean pairwise GCD-11 than
“lakes” (i.e., “marine”: 3.16, “river”: 2.87, and “stream” 3.21).
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Table S6.2. Mean pairwise graphlet correlation distance-11 (GCD-11) between food webs sampled
from the same type or different “aquatic” ecosystem. Number of webs from each “aquatic” ecosystem
are identified in parentheses.

Lake Marine River Stream
Lake 2.58 (n = 13)
Marine 2.96 3.16 (n = 29)
River 2.71 3.17 2.87 (n = 7)
Stream 2.93 3.24 2.97 3.21 (n = 18)
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S6.10.6 Median pairwise GCD-11

Table S6.3. Median pairwise graphlet correlation distance-11 (GCD-11) between food webs sampled
from the same type of ecosystem or different type of ecosystem. Number of webs from each ecosystem
are identified in parentheses. “Aquatic” food webs include those from marine, lakes, rivers, streams,
and springs, “aquatic and terrestrial” food webs include those from salt marshes, ponds, bogs,
mudflats, pitcher plants, and tree holes filled with water, and “terrestrial” food webs include those
from sand dunes, forests, meadows, prairie, and farmlands.

Aquatic Aquatic and terrestrial Terrestrial
Aquatic 3.01 (n = 167)
Aquatic and terrestrial 3.06 3.09 (n = 28)

Terrestrial 3.00 2.86 2.33 (n = 79)
3.72 (n = 31)†

†After removing all n = 48 “terrestrial” food webs sourced from Digel et al. (2014).
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Figure S6.8. Median pairwise graphlet correlation distance-11 (GCD-11) by decade published
between food webs sourced from publications that each produced only a single network (teal solid
line) and, multiple food webs sourced from the same publication, weighted by the number of networks
produced by each publication (blue dashed line). Circle size corresponds to the number of food webs
published in the decade.
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S6.10.7 No evidence that the number of nodes or standard deviation in
the number of nodes influences pairwise GCD-11

Here, we test whether the number of nodes (i.e., web size) or standard deviation in the number
of nodes (i.e., standard deviation of web size) in food webs influenced both mean and individual
pairwise GCD-11.

S6.10.7.1 Mean pairwise GCD-11 between food webs from publications that produced
only a single network

We divided webs sourced from publications that each provided only a single network into quartiles
based on their number of nodes (Table S6.5). With respect to these quartiles (labelled Q1, Q2, Q3,
and Q4), we found that although both web size (mean number of nodes for Q1: 12.52, Q2: 19.57,
Q3: 28.89, and Q4: 117.95) and standard deviation in web size (mean standard deviation of nodes
for Q1: 1.59, Q2: 3.09, Q3: 3.05, and Q4: 108.76) differed greatly between the quartiles, there were
no large differences between their respective mean pairwise GCD-11 (mean pairwise GCD-11 for Q1:
2.70, Q2: 2.90, Q3: 3.04, and Q4: 3.05). Hence, neither web size or standard deviation in web size
influenced mean pairwise GCD-11.

S6.10.7.2 Mean pairwise GCD-11 between food webs from publications that produced
multiple networks

To keep publication a factor rather than separate webs into quartiles as was done above for webs
sourced from publications that each provided only a single network, we chose to instead evaluate the
regressions of both mean web size and standard deviation in web size across publications to explain
mean pairwise GCD-11 (Figure S6.9). In both cases, neither web size nor the standard deviation in
web size explained mean pairwise GCD-11 across publication (p > 0.34, and p > 0.55, respectively).

S6.10.7.3 Pairwise GCD-11 between all food webs

Regardless of publication source, we compared all pairwise graphlet correlation distance-11s (GCD-
11s) between the 274 food webs in this study. This amounts to a total of 37401 pairwise distances:

number of networks · (number of networks − 1)

2
=

274 · 273
2

= 37401 . (S6.2)

In both cases, neither web size (R2 = 0.02) nor standard deviation in web size (R2 = 0.02)
meaningfully explained pairwise GCD-11s (Figure S6.10).
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Table S6.5. Mean pairwise graphlet correlation distance-11 (GCD-11) between food webs sourced
from publications that each produced only a single network (i.e., one food per publication) when
partitioned into quartiles based the number of nodes.

Quartile number
of nodes

Mean pairwise
GCD-11

Mean number
of nodes

S.D. number
of nodes

Number of
food webs

1 2.70 12.52 1.59 23
2 2.90 19.57 3.09 21
3 3.04 28.89 3.05 19
4 3.05 117.95 108.76 20
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Figure S6.9. (A) Mean pairwise graphlet correlation distance-11 (GCD-11) as a function of the mean
number of nodes between food webs sourced from the same publication (n = 22). (B) Mean pairwise
GCD-11 as a function of the standard deviation in the number of nodes between food webs sourced
from the same publication (n = 22). See Table S6.6 for exact values for the mean pairwise GCD-11,
the mean number of nodes, and the standard deviation in the number of nodes between food webs
sourced from the same publication.
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Figure S6.10. (A) All possible n = 37401 pairwise graphlet correlation distance-11s (GCD-11s)
between the 274 food webs as a function of the absolute difference in network size (i.e., number
of nodes), where each point is a pairwise GCD-11 measure between two webs. (B) All possible
n = 37401 pairwise graphlet correlation distance-11s (GCD-11s) between the 274 food webs as a
function of the standard deviation in network size (i.e., number of nodes), where each point is a
pairwise GCD-11 measure between two webs.
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Table S6.6. Mean pairwise graphlet correlation distance-11 (GCD-11) between food webs from the
same publication grouping. Each food web sourced from a publication that produced only a single
network belong to the grouping “one food web per publication”, while multiple food webs sourced
from the same publication belong to that publication’s grouping.

Publication grouping
Mean

pairwise
GCD-11

Mean
number
of nodes

S.D.
number
of nodes

Number
of

food webs
Closs and Lake (1994) 0.41 50.67 1.53 3
Angelini et al. (2006) 0.51 32.50 0.71 2
Stewart and Sprules (2011) 0.56 22.00 0.00 2
Baeta et al. (2011) 0.67 27.00 6.36 6
Thompson and Townsend (2003) 0.70 78.00 19.98 4
Cattin Blandenier (2004) 0.78 131.50 18.13 8
Alcorlo et al. (2001) 0.83 14.00 1.41 2
Angelini et al. (2013) 0.96 39.33 0.58 3
Menge and Sutherland (1976) 1.06 13.00 0.00 2
Tavares-Cromar and Williams (1996) 1.07 38.00 1.41 2
Digel et al. (2014) 1.08 125.56 17.83 48
Parker and Huryn (2006) 1.20 40.50 3.70 4
Thompson and Townsend (2004) 1.31 75.73 18.01 30
Cohen et al. (2003) 1.67 20.50 0.71 2
Piechnik et al. (2008) 1.68 118.00 84.46 5
Fryer (1959) 1.87 33.50 2.52 4
Havens (1992) 2.24 42.80 13.45 40
Layer et al. (2010) 2.30 33.00 19.58 9
Beaver (1985) 2.44 16.00 4.36 3
O’Gorman et al. (2019) 2.45 42.25 12.37 4
Legagneux et al. (2014) 2.46 19.67 3.72 6
Valiela (1974) 3.07 30.50 6.36 2
One food web per publication 3.13 43.46 67.55 83
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S6.10.8 No substantial evidence “aquatic” food webs constructed via
Ecopath are more structurally similar than “aquatic” food webs
not constructed via Ecopath

Overall, there is no substantial improvement in structural similarity when food webs were built using
similar network construction methodology. As illustrated in Subsubsections S6.10.8.1 and S6.10.8.2,
the mean pairwise graphlet correlation distance-11 (GCD-11) between “aquatic” webs constructed via
Ecopath is marginally reduced/improved as compared to non-Ecopath “aquatic” webs (2.78 vs. 3.02,
respectively). In contrast, the mean pairwise GCD-11 between food webs sourced from the same
publication is much smaller and more similar, i.e., mean pairwise GCD-11: 1.51 (Table 6.2).

Of the non-Ecopath “aquatic” webs available from our dataset, 37 webs were sourced from
publications that each provided only a single network, while 102 webs were sourced from 12
publications that each provided multiple networks (see Table S6.7 for list). Specifically, 3 webs were
sourced from Closs and Lake (1994), 4 webs were sourced from Thompson and Townsend (2003), 2
webs were sourced from Alcorlo et al. (2001), 2 webs were sourced from Menge and Sutherland (1976),
2 webs were sourced from Tavares-Cromar and Williams (1996), 4 webs were sourced from Parker
and Huryn (2006), 30 webs were sourced from Thompson and Townsend (2004), 2 webs were sourced
from Cohen et al. (1993), 4 webs were sourced from Fryer (1959), 36 webs were sourced from Havens
(1992), 9 were sourced from Layer et al. (2010), and 4 were sourced from O’Gorman et al. (2019).

S6.10.8.1 Structural similarity between “aquatic” food webs not constructed via
Ecopath

Here, we evaluated the mean pairwise GCD-11 between all “aquatic” food webs not constructed
using Ecopath. Since food webs sourced from the same publication were already known to be very
highly structurally similar to each other (i.e., mean pairwise GCD-11 of 1.51 [Table 6.2]), we needed
to remove publication effect from this Ecopath network analysis. To do so, we only included in our
analyses, webs that each had unique publication sources. As a means of reducing the burden of
sampling across all possible different and unique combinations of taking a single web from each of
the 12 publications that provided multiple networks, we simply randomly chose 12 webs. We refer to
a collated combination of 12 randomly chosen webs (each one from a unique publication source that
provided multiple networks), and all 37 webs sourced from publications that each provided only a
single network, as a single realization, which consisted of 49 webs. Across 200 realizations, we found
the average mean pairwise GCD-11 between “aquatic” webs not constructed via Ecopath was 3.02.

S6.10.8.2 Structural similarity between “aquatic” food webs constructed via Ecopath

To test for the possible improvement in food web structural similarity when limiting one’s analysis
to only those that have been constructed using similar methodology, we also evaluated the mean
pairwise GCD-11 between “aquatic” food webs constructed using Ecopath. Of the 28 “aquatic” food
webs constructed using Ecopath (see Table S6.7 for list), 15 webs were sourced from publications
that each produced only a single network, while 13 webs were sourced from 4 publications that each
produced multiple networks. Specifically, 2 webs were sourced from Angelini et al. (2006), 3 webs
were sourced from Angelini et al. (2013), 6 webs were sourced from Baeta et al. (2011), and 2 webs
were sourced from Stewart and Sprules (2011).
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Again, since food webs sourced from the same publication were very highly structurally similar to
each other, we needed to remove this publication effect in order to effectively evaluate the structural
similarity between the 28 “aquatic” webs constructed using Ecopath. To do so, we only included in
our analyses webs that each had unique publication sources. Thus, we evaluated the mean pairwise
GCD-11 between food webs sourced from publications that each produced only a single network,
along with all 72 different unique combinations when including four chosen webs, one from each of
the publications that produced multiple networks. We refer to a single unique combination of 4 webs
each chosen from a different publication that produced multiple networks and the 15 webs sourced
from publications that each produced a single network, as a single realization, which consisted of
19 webs. Across all 72 realizations, we found the average mean pairwise GCD-11 between “aquatic”
food webs constructed via Ecopath was 2.78.

205



20
6

S
6.

10
.9

Fo
od

w
eb

ci
ta

ti
on

s

T
ab

le
S6

.7
.
T

he
lis

t
of

14
8

fo
od

w
eb

s
us

ed
in

th
is

st
ud

y.
W

eb
s

ar
e

cl
as

si
fie

d
as

be
lo

ng
in

g
to

ty
pe

aq
ua

ti
c

(“
A

”)
,
aq

ua
ti

c
an

d
te

rr
es

tr
ia

l
(“

A
&

T
”)

,
or

te
rr

es
tr

ia
l(

“T
”)

.

#
N

am
e

T
yp

e
R

efi
ne

d
aq

ua
ti

c
ty

pe

P
ub

lic
at

io
n

gr
ou

pi
ng

E
co

pa
th

C
it

at
io

n

1
W

E
B

3_
A

&
T

O
ne

ne
tw

or
k

pe
r

pu
bl

ic
at

io
n

N
A

W
oo

dw
el

l(
19

67
)

2
W

E
B

4_
A

&
T

O
ne

ne
tw

or
k

pe
r

pu
bl

ic
at

io
n

N
A

Jo
hn

st
on

(1
95

6)
3

W
E

B
6_

A
&

T
O

ne
ne

tw
or

k
pe

r
pu

bl
ic

at
io

n
N

A
M

ac
G

in
it

ie
(1

93
5)

4
W

E
B

12
_

A
M

ar
in

e
M

en
ge

&
Su

th
er

la
nd

(1
97

6)
N

A
M

en
ge

an
d

Su
th

er
la

nd
(1

97
6)

5
W

E
B

13
_

A
M

ar
in

e
M

en
ge

&
Su

th
er

la
nd

(1
97

6)
N

A
M

en
ge

an
d

Su
th

er
la

nd
(1

97
6)

6
W

E
B

17
_

A
M

ar
in

e
O

ne
ne

tw
or

k
pe

r
pu

bl
ic

at
io

n
N

A
H

ia
tt

an
d

St
ra

sb
ur

g
(1

96
0)

7
W

E
B

18
_

A
&

T
O

ne
ne

tw
or

k
pe

r
pu

bl
ic

at
io

n
N

A
N

ie
ri

ng
(1

96
3)

8
W

E
B

22
_

A
&

T
O

ne
ne

tw
or

k
pe

r
pu

bl
ic

at
io

n
N

A
Su

m
m

er
ha

ye
s

an
d

E
lt

on
(1

92
3)

9
W

E
B

28
_

T
O

ne
ne

tw
or

k
pe

r
pu

bl
ic

at
io

n
N

A
P
av

io
ur

-S
m

it
h

(1
95

6)
10

W
E

B
29

_
A

M
ar

in
e

O
ne

ne
tw

or
k

pe
r

pu
bl

ic
at

io
n

N
A

D
un

ba
r

(1
95

3)
11

W
E

B
33

_
A

La
ke

Fr
ye

r
(1

95
9)

N
A

Fr
ye

r
(1

95
9)

12
W

E
B

20
4_

A
La

ke
Fr

ye
r

(1
95

9)
N

A
Fr

ye
r

(1
95

9)
13

W
E

B
38

_
A

La
ke

Fr
ye

r
(1

95
9)

N
A

Fr
ye

r
(1

95
9)

14
W

E
B

39
_

A
La

ke
Fr

ye
r

(1
95

9)
N

A
Fr

ye
r

(1
95

9)
15

W
E

B
34

_
A

St
re

am
O

ne
ne

tw
or

k
pe

r
pu

bl
ic

at
io

n
N

A
E

ri
ch

se
n

Jo
ne

s
(1

94
9)

16
W

E
B

35
_

A
St

re
am

O
ne

ne
tw

or
k

pe
r

pu
bl

ic
at

io
n

N
A

M
in

sh
al

l(
19

67
)

17
W

E
B

37
_

A
M

ar
in

e
O

ne
ne

tw
or

k
pe

r
pu

bl
ic

at
io

n
N

A
C

la
rk

e
et

al
.(

19
67

)
18

W
E

B
40

_
T

O
ne

ne
tw

or
k

pe
r

pu
bl

ic
at

io
n

N
A

H
ar

ri
so

n
(1

96
2)

19
W

E
B

42
_

A
M

ar
in

e
O

ne
ne

tw
or

k
pe

r
pu

bl
ic

at
io

n
N

A
V

in
og

ra
do

v
an

d
Sh

us
hk

in
a

(1
97

8)
20

W
E

B
43

_
A

M
ar

in
e

O
ne

ne
tw

or
k

pe
r

pu
bl

ic
at

io
n

N
A

R
os

en
th

al
et

al
.(

19
74

)
T
ab

le
co

nt
in

ue
d

..
.



20
7

..
.C

on
ti

nu
at

io
n

of
T
ab

le
S6

.7
.

#
N

am
e

T
yp

e
R

efi
ne

d
aq

ua
ti

c
ty

pe

P
ub

lic
at

io
n

gr
ou

pi
ng

E
co

pa
th

C
it

at
io

n

21
W

E
B

45
_

A
Sp

ri
ng

O
ne

ne
tw

or
k

pe
r

pu
bl

ic
at

io
n

N
A

T
ill

y
(1

96
8)

22
W

E
B

58
_

A
&

T
O

ne
ne

tw
or

k
pe

r
pu

bl
ic

at
io

n
N

A
Sm

ir
no

v
(1

96
1)

23
W

E
B

59
_

T
O

ne
ne

tw
or

k
pe

r
pu

bl
ic

at
io

n
N

A
T
w

om
ey

(1
94

5)
24

W
E

B
63

_
A

R
iv

er
O

ne
ne

tw
or

k
pe

r
pu

bl
ic

at
io

n
N

A
E

ri
ch

se
n

Jo
ne

s
(1

95
0)

25
W

E
B

67
_

A
&

T
O

ne
ne

tw
or

k
pe

r
pu

bl
ic

at
io

n
N

A
C

ar
ls

on
(1

96
8)

26
W

E
B

72
_

A
La

ke
O

ne
ne

tw
or

k
pe

r
pu

bl
ic

at
io

n
N

A
B

ar
il

(1
98

3)
27

W
E

B
84

_
A

&
T

O
ne

ne
tw

or
k

pe
r

pu
bl

ic
at

io
n

N
A

W
ilb

ur
(1

97
2)

28
W

E
B

87
_

A
M

ar
in

e
O

ne
ne

tw
or

k
pe

r
pu

bl
ic

at
io

n
N

A
B

ra
ds

tr
ee

t
an

d
C

ro
ss

(1
98

2)
29

W
E

B
88

_
A

R
iv

er
O

ne
ne

tw
or

k
pe

r
pu

bl
ic

at
io

n
N

A
K

uu
se

la
(1

97
9)

30
W

E
B

89
_

A
R

iv
er

O
ne

ne
tw

or
k

pe
r

pu
bl

ic
at

io
n

N
A

H
ar

tl
ey

(1
94

8)
31

W
E

B
98

_
T

O
ne

ne
tw

or
k

pe
r

pu
bl

ic
at

io
n

N
A

H
ol

m
an

d
Sc

ho
lt

z
(1

98
0)

32
W

E
B

10
4_

A
M

ar
in

e
O

ne
ne

tw
or

k
pe

r
pu

bl
ic

at
io

n
N

A
M

en
ge

et
al

.(
19

86
)

33
W

E
B

10
5_

A
M

ar
in

e
O

ne
ne

tw
or

k
pe

r
pu

bl
ic

at
io

n
N

A
E

dw
ar

ds
et

al
.(

19
82

)
34

W
E

B
10

7_
A

M
ar

in
e

O
ne

ne
tw

or
k

pe
r

pu
bl

ic
at

io
n

N
A

P
et

er
so

n
(1

97
9)

35
W

E
B

10
8_

A
M

ar
in

e
O

ne
ne

tw
or

k
pe

r
pu

bl
ic

at
io

n
N

A
H

ew
at

t
(1

93
7)

36
W

E
B

11
7_

A
La

ke
O

ne
ne

tw
or

k
pe

r
pu

bl
ic

at
io

n
N

A
Za

re
t

an
d

P
ai

ne
(1

97
3)

37
W

E
B

12
1_

A
M

ar
in

e
O

ne
ne

tw
or

k
pe

r
pu

bl
ic

at
io

n
N

A
va

n
E

s
(1

97
7)

38
W

E
B

12
3_

T
O

ne
ne

tw
or

k
pe

r
pu

bl
ic

at
io

n
N

A
H

ar
ri

s
(2

01
6)

39
W

E
B

13
1_

A
&

T
B

ea
ve

r
(1

98
5)

N
A

B
ea

ve
r

(1
98

5)
40

W
E

B
13

2_
A

&
T

B
ea

ve
r

(1
98

5)
N

A
B

ea
ve

r
(1

98
5)

41
W

E
B

13
4_

A
&

T
B

ea
ve

r
(1

98
5)

N
A

B
ea

ve
r

(1
98

5)
42

W
E

B
15

1_
T

O
ne

ne
tw

or
k

pe
r

pu
bl

ic
at

io
n

N
A

R
ic

ha
rd

s
(1

92
6)

43
W

E
B

15
2_

T
O

ne
ne

tw
or

k
pe

r
pu

bl
ic

at
io

n
N

A
W

hi
tt

ak
er

(1
98

4)
T
ab

le
co

nt
in

ue
d

..
.



20
8

..
.C

on
ti

nu
at

io
n

of
T
ab

le
S6

.7
.

#
N

am
e

T
yp

e
R

efi
ne

d
aq

ua
ti

c
ty

pe

P
ub

lic
at

io
n

gr
ou

pi
ng

E
co

pa
th

C
it

at
io

n

44
W

E
B

15
4_

T
O

ne
ne

tw
or

k
pe

r
pu

bl
ic

at
io

n
N

A
M

ay
se

an
d

P
ri

ce
(1

97
8)

45
W

E
B

15
5_

T
O

ne
ne

tw
or

k
pe

r
pu

bl
ic

at
io

n
N

A
A

sk
ew

(1
97

5)
46

W
E

B
19

9_
T

O
ne

ne
tw

or
k

pe
r

pu
bl

ic
at

io
n

N
A

V
al

ie
la

(1
96

9)
47

W
E

B
20

0_
T

V
al

ie
la

(1
97

4)
N

A
V
al

ie
la

(1
97

4)
48

W
E

B
20

1_
T

V
al

ie
la

(1
97

4)
N

A
V
al

ie
la

(1
97

4)
49

W
E

B
20

5_
A

St
re

am
O

ne
ne

tw
or

k
pe

r
pu

bl
ic

at
io

n
N

A
H

ild
re

w
et

al
.(

19
85

)
50

W
E

B
20

7_
A

St
re

am
O

ne
ne

tw
or

k
pe

r
pu

bl
ic

at
io

n
N

A
K

os
lu

ch
er

an
d

M
in

sh
al

l(
19

73
)

51
W

E
B

20
8_

A
St

re
am

O
ne

ne
tw

or
k

pe
r

pu
bl

ic
at

io
n

N
A

M
in

ck
le

y
(1

96
3)

52
W

E
B

21
0_

A
St

re
am

O
ne

ne
tw

or
k

pe
r

pu
bl

ic
at

io
n

N
A

P
er

ci
va

la
nd

W
hi

te
he

ad
(1

92
9)

53
W

E
B

21
1_

A
St

re
am

O
ne

ne
tw

or
k

pe
r

pu
bl

ic
at

io
n

N
A

R
ic

ke
r

(1
93

4)
54

W
E

B
21

3_
A

St
re

am
O

ne
ne

tw
or

k
pe

r
pu

bl
ic

at
io

n
N

A
B

ad
co

ck
(1

94
9)

55
W

E
B

21
4_

A
St

re
am

T
ho

m
ps

on
&

T
ow

ns
en

d
(2

00
3)

N
A

T
ho

m
ps

on
an

d
T
ow

ns
en

d
(2

00
3)

56
W

E
B

21
5_

A
St

re
am

T
ho

m
ps

on
&

T
ow

ns
en

d
(2

00
3)

N
A

T
ho

m
ps

on
an

d
T
ow

ns
en

d
(2

00
3)

57
W

E
B

21
6_

A
St

re
am

T
ho

m
ps

on
&

T
ow

ns
en

d
(2

00
3)

N
A

T
ho

m
ps

on
an

d
T
ow

ns
en

d
(2

00
3)

58
W

E
B

21
7_

A
St

re
am

T
ho

m
ps

on
&

T
ow

ns
en

d
(2

00
3)

N
A

T
ho

m
ps

on
an

d
T
ow

ns
en

d
(2

00
3)

59
W

E
B

21
8_

A
St

re
am

T
ho

m
ps

on
&

T
ow

ns
en

d
(2

00
4)

N
A

T
ho

m
ps

on
an

d
T
ow

ns
en

d
(2

00
4)

60
W

E
B

21
9_

A
St

re
am

T
ho

m
ps

on
&

T
ow

ns
en

d
(2

00
4)

N
A

T
ho

m
ps

on
an

d
T
ow

ns
en

d
(2

00
4)

61
W

E
B

22
0_

A
St

re
am

T
ho

m
ps

on
&

T
ow

ns
en

d
(2

00
4)

N
A

T
ho

m
ps

on
an

d
T
ow

ns
en

d
(2

00
4)

62
W

E
B

22
1_

A
St

re
am

T
ho

m
ps

on
&

T
ow

ns
en

d
(2

00
4)

N
A

T
ho

m
ps

on
an

d
T
ow

ns
en

d
(2

00
4)

63
W

E
B

22
2_

A
St

re
am

T
ho

m
ps

on
&

T
ow

ns
en

d
(2

00
4)

N
A

T
ho

m
ps

on
an

d
T
ow

ns
en

d
(2

00
4)

64
W

E
B

22
3_

A
St

re
am

T
ho

m
ps

on
&

T
ow

ns
en

d
(2

00
4)

N
A

T
ho

m
ps

on
an

d
T
ow

ns
en

d
(2

00
4)

65
W

E
B

22
4_

A
St

re
am

T
ho

m
ps

on
&

T
ow

ns
en

d
(2

00
4)

N
A

T
ho

m
ps

on
an

d
T
ow

ns
en

d
(2

00
4)

66
W

E
B

22
5_

A
St

re
am

T
ho

m
ps

on
&

T
ow

ns
en

d
(2

00
4)

N
A

T
ho

m
ps

on
an

d
T
ow

ns
en

d
(2

00
4)

T
ab

le
co

nt
in

ue
d

..
.



20
9

..
.C

on
ti

nu
at

io
n

of
T
ab

le
S6

.7
.

#
N

am
e

T
yp

e
R

efi
ne

d
aq

ua
ti

c
ty

pe

P
ub

lic
at

io
n

gr
ou

pi
ng

E
co

pa
th

C
it

at
io

n

67
W

E
B

22
6_

A
St

re
am

T
ho

m
ps

on
&

T
ow

ns
en

d
(2

00
4)

N
A

T
ho

m
ps

on
an

d
T
ow

ns
en

d
(2

00
4)

68
W

E
B

22
7_

A
St

re
am

T
ho

m
ps

on
&

T
ow

ns
en

d
(2

00
4)

N
A

T
ho

m
ps

on
an

d
T
ow

ns
en

d
(2

00
4)

69
W

E
B

22
8_

A
St

re
am

T
ho

m
ps

on
&

T
ow

ns
en

d
(2

00
4)

N
A

T
ho

m
ps

on
an

d
T
ow

ns
en

d
(2

00
4)

70
W

E
B

22
9_

A
St

re
am

T
ho

m
ps

on
&

T
ow

ns
en

d
(2

00
4)

N
A

T
ho

m
ps

on
an

d
T
ow

ns
en

d
(2

00
4)

71
W

E
B

23
0_

A
St

re
am

T
ho

m
ps

on
&

T
ow

ns
en

d
(2

00
4)

N
A

T
ho

m
ps

on
an

d
T
ow

ns
en

d
(2

00
4)

72
W

E
B

23
1_

A
St

re
am

T
ho

m
ps

on
&

T
ow

ns
en

d
(2

00
4)

N
A

T
ho

m
ps

on
an

d
T
ow

ns
en

d
(2

00
4)

73
W

E
B

23
2_

A
St

re
am

T
ho

m
ps

on
&

T
ow

ns
en

d
(2

00
4)

N
A

T
ho

m
ps

on
an

d
T
ow

ns
en

d
(2

00
4)

74
W

E
B

23
3_

A
St

re
am

T
ho

m
ps

on
&

T
ow

ns
en

d
(2

00
4)

N
A

T
ho

m
ps

on
an

d
T
ow

ns
en

d
(2

00
4)

75
W

E
B

23
4_

A
St

re
am

T
ho

m
ps

on
&

T
ow

ns
en

d
(2

00
4)

N
A

T
ho

m
ps

on
an

d
T
ow

ns
en

d
(2

00
4)

76
W

E
B

23
5_

A
St

re
am

T
ho

m
ps

on
&

T
ow

ns
en

d
(2

00
4)

N
A

T
ho

m
ps

on
an

d
T
ow

ns
en

d
(2

00
4)

77
W

E
B

23
6_

A
St

re
am

T
ho

m
ps

on
&

T
ow

ns
en

d
(2

00
4)

N
A

T
ho

m
ps

on
an

d
T
ow

ns
en

d
(2

00
4)

78
W

E
B

23
7_

A
St

re
am

T
ho

m
ps

on
&

T
ow

ns
en

d
(2

00
4)

N
A

T
ho

m
ps

on
an

d
T
ow

ns
en

d
(2

00
4)

79
W

E
B

23
8_

A
St

re
am

T
ho

m
ps

on
&

T
ow

ns
en

d
(2

00
4)

N
A

T
ho

m
ps

on
an

d
T
ow

ns
en

d
(2

00
4)

80
W

E
B

23
9_

A
St

re
am

T
ho

m
ps

on
&

T
ow

ns
en

d
(2

00
4)

N
A

T
ho

m
ps

on
an

d
T
ow

ns
en

d
(2

00
4)

81
W

E
B

24
0_

A
St

re
am

T
ho

m
ps

on
&

T
ow

ns
en

d
(2

00
4)

N
A

T
ho

m
ps

on
an

d
T
ow

ns
en

d
(2

00
4)

82
W

E
B

24
1_

A
St

re
am

T
ho

m
ps

on
&

T
ow

ns
en

d
(2

00
4)

N
A

T
ho

m
ps

on
an

d
T
ow

ns
en

d
(2

00
4)

83
W

E
B

24
2_

A
St

re
am

T
ho

m
ps

on
&

T
ow

ns
en

d
(2

00
4)

N
A

T
ho

m
ps

on
an

d
T
ow

ns
en

d
(2

00
4)

84
W

E
B

24
3_

A
St

re
am

T
ho

m
ps

on
&

T
ow

ns
en

d
(2

00
4)

N
A

T
ho

m
ps

on
an

d
T
ow

ns
en

d
(2

00
4)

85
W

E
B

24
4_

A
St

re
am

T
ho

m
ps

on
&

T
ow

ns
en

d
(2

00
4)

N
A

T
ho

m
ps

on
an

d
T
ow

ns
en

d
(2

00
4)

86
W

E
B

24
5_

A
St

re
am

T
ho

m
ps

on
&

T
ow

ns
en

d
(2

00
4)

N
A

T
ho

m
ps

on
an

d
T
ow

ns
en

d
(2

00
4)

87
W

E
B

24
6_

A
St

re
am

T
ho

m
ps

on
&

T
ow

ns
en

d
(2

00
4)

N
A

T
ho

m
ps

on
an

d
T
ow

ns
en

d
(2

00
4)

88
W

E
B

24
7_

A
St

re
am

T
ho

m
ps

on
&

T
ow

ns
en

d
(2

00
4)

N
A

T
ho

m
ps

on
an

d
T
ow

ns
en

d
(2

00
4)

89
W

E
B

24
8_

A
&

T
O

ne
ne

tw
or

k
pe

r
pu

bl
ic

at
io

n
N

A
T

ho
m

ps
on

et
al

.(
20

05
)

T
ab

le
co

nt
in

ue
d

..
.



21
0

..
.C

on
ti

nu
at

io
n

of
T
ab

le
S6

.7
.

#
N

am
e

T
yp

e
R

efi
ne

d
aq

ua
ti

c
ty

pe

P
ub

lic
at

io
n

gr
ou

pi
ng

E
co

pa
th

C
it

at
io

n

90
W

E
B

24
9_

A
R

iv
er

O
ne

ne
tw

or
k

pe
r

pu
bl

ic
at

io
n

Y
es

A
ng

el
in

ia
nd

A
go

st
in

ho
(2

00
5)

91
W

E
B

25
0_

A
R

iv
er

A
ng

el
in

ie
t

al
.(

20
06

)
Y

es
A

ng
el

in
ie

t
al

.(
20

06
)

92
W

E
B

25
1_

A
R

iv
er

A
ng

el
in

ie
t

al
.(

20
06

)
Y

es
A

ng
el

in
ie

t
al

.(
20

06
)

93
W

E
B

25
2_

A
R

iv
er

O
ne

ne
tw

or
k

pe
r

pu
bl

ic
at

io
n

Y
es

A
ng

el
in

ie
t

al
.(

20
10

)
94

W
E

B
25

3_
A

M
ar

in
e

O
ne

ne
tw

or
k

pe
r

pu
bl

ic
at

io
n

Y
es

A
ng

el
in

ia
nd

V
az

-V
el

ho
(2

01
1)

95
W

E
B

25
4_

A
La

ke
A

ng
el

in
ie

t
al

.(
20

13
)

Y
es

A
ng

el
in

ie
t

al
.(

20
13

)
96

W
E

B
25

5_
A

La
ke

A
ng

el
in

ie
t

al
.(

20
13

)
Y

es
A

ng
el

in
ie

t
al

.(
20

13
)

97
W

E
B

25
6_

A
La

ke
A

ng
el

in
ie

t
al

.(
20

13
)

Y
es

A
ng

el
in

ie
t

al
.(

20
13

)
98

W
E

B
25

7_
A

M
ar

in
e

B
ae

ta
et

al
.(

20
11

)
Y
es

B
ae

ta
et

al
.(

20
11

)
99

W
E

B
25

8_
A

M
ar

in
e

B
ae

ta
et

al
.(

20
11

)
Y
es

B
ae

ta
et

al
.(

20
11

)
10

0
W

E
B

25
9_

A
M

ar
in

e
B

ae
ta

et
al

.(
20

11
)

Y
es

B
ae

ta
et

al
.(

20
11

)
10

1
W

E
B

26
0_

A
M

ar
in

e
B

ae
ta

et
al

.(
20

11
)

Y
es

B
ae

ta
et

al
.(

20
11

)
10

2
W

E
B

26
1_

A
M

ar
in

e
B

ae
ta

et
al

.(
20

11
)

Y
es

B
ae

ta
et

al
.(

20
11

)
10

3
W

E
B

26
2_

A
M

ar
in

e
B

ae
ta

et
al

.(
20

11
)

Y
es

B
ae

ta
et

al
.(

20
11

)
10

4
W

E
B

26
3_

A
&

T
O

ne
ne

tw
or

k
pe

r
pu

bl
ic

at
io

n
N

A
Sc

hn
ei

de
r

(1
99

7)
10

5
W

E
B

26
4_

A
St

re
am

O
ne

ne
tw

or
k

pe
r

pu
bl

ic
at

io
n

N
A

St
ag

lia
no

an
d

W
hi

le
s

(2
00

2)
10

6
W

E
B

26
5_

A
M

ar
in

e
O

ne
ne

tw
or

k
pe

r
pu

bl
ic

at
io

n
Y
es

Li
n

et
al

.(
20

06
)

10
7

W
E

B
26

6_
A

M
ar

in
e

O
ne

ne
tw

or
k

pe
r

pu
bl

ic
at

io
n

Y
es

C
or

ne
jo

-D
on

os
o

an
d

A
nt

ez
an

a
(2

00
8)

10
8

W
E

B
26

7_
A

M
ar

in
e

O
ne

ne
tw

or
k

pe
r

pu
bl

ic
at

io
n

Y
es

Ze
ti

na
-R

ej
ón

et
al

.(
20

03
)

10
9

W
E

B
26

8_
A

M
ar

in
e

O
ne

ne
tw

or
k

pe
r

pu
bl

ic
at

io
n

Y
es

C
ru

z-
E

sc
al

on
a

et
al

.(
20

07
)

11
0

W
E

B
26

9_
A

La
ke

O
ne

ne
tw

or
k

pe
r

pu
bl

ic
at

io
n

Y
es

Li
u

et
al

.(
20

21
)

11
1

W
E

B
27

0_
A

M
ar

in
e

O
ne

ne
tw

or
k

pe
r

pu
bl

ic
at

io
n

N
A

F
ilg

ue
ir

a
an

d
C

as
tr

o
(2

01
1)

T
ab

le
co

nt
in

ue
d

..
.



21
1

..
.C

on
ti

nu
at

io
n

of
T
ab

le
S6

.7
.

#
N

am
e

T
yp

e
R

efi
ne

d
aq

ua
ti

c
ty

pe

P
ub

lic
at

io
n

gr
ou

pi
ng

E
co

pa
th

C
it

at
io

n

11
2

W
E

B
27

1_
A

La
ke

O
ne

ne
tw

or
k

pe
r

pu
bl

ic
at

io
n

N
A

A
m

un
ds

en
et

al
.(

20
13

)
11

3
W

E
B

27
3_

A
St

re
am

P
ar

ke
r

&
H

ur
yn

(2
00

6)
N

A
P
ar

ke
r

an
d

H
ur

yn
(2

00
6)

11
4

W
E

B
27

4_
A

St
re

am
P
ar

ke
r

&
H

ur
yn

(2
00

6)
N

A
P
ar

ke
r

an
d

H
ur

yn
(2

00
6)

11
5

W
E

B
27

5_
A

St
re

am
P
ar

ke
r

&
H

ur
yn

(2
00

6)
N

A
P
ar

ke
r

an
d

H
ur

yn
(2

00
6)

11
6

W
E

B
27

6_
A

St
re

am
P
ar

ke
r

&
H

ur
yn

(2
00

6)
N

A
P
ar

ke
r

an
d

H
ur

yn
(2

00
6)

11
7

W
E

B
27

8_
A

La
ke

St
ew

ar
t

&
Sp

ru
le

s
(2

01
1)

Y
es

St
ew

ar
t

an
d

Sp
ru

le
s

(2
01

1)
11

8
W

E
B

27
9_

A
La

ke
St

ew
ar

t
&

Sp
ru

le
s

(2
01

1)
Y

es
St

ew
ar

t
an

d
Sp

ru
le

s
(2

01
1)

11
9

W
E

B
28

1_
A

St
re

am
T
av

ar
es

-C
ro

m
ar

&
W

ill
ia

m
s

(1
99

6)
N

A
T
av

ar
es

-C
ro

m
ar

an
d

W
ill

ia
m

s
(1

99
6)

12
0

W
E

B
28

5_
A

St
re

am
T
av

ar
es

-C
ro

m
ar

&
W

ill
ia

m
s

(1
99

6)
N

A
T
av

ar
es

-C
ro

m
ar

an
d

W
ill

ia
m

s
(1

99
6)

12
1

W
E

B
28

8_
A

M
ar

in
e

O
ne

ne
tw

or
k

pe
r

pu
bl

ic
at

io
n

Y
es

C
hr

is
ti

an
an

d
Lu

cz
ko

vi
ch

(1
99

9)
12

2
W

E
B

28
9_

A
La

ke
O

ne
ne

tw
or

k
pe

r
pu

bl
ic

at
io

n
Y

es
Fe

ta
hi

et
al

.(
20

11
)

12
3

W
E

B
29

5_
A

&
T

O
ne

ne
tw

or
k

pe
r

pu
bl

ic
at

io
n

N
A

P
re

st
on

et
al

.(
20

12
)

12
4

W
E

B
29

6_
A

&
T

O
ne

ne
tw

or
k

pe
r

pu
bl

ic
at

io
n

N
A

R
at

si
ra

rs
on

an
d

Si
la

nd
er

(1
99

6)
12

5
W

E
B

30
6_

A
St

re
am

C
lo

ss
&

La
ke

(1
99

4)
N

A
C

lo
ss

an
d

La
ke

(1
99

4)
12

6
W

E
B

30
7_

A
St

re
am

C
lo

ss
&

La
ke

(1
99

4)
N

A
C

lo
ss

an
d

La
ke

(1
99

4)
12

7
W

E
B

30
8_

A
St

re
am

C
lo

ss
&

La
ke

(1
99

4)
N

A
C

lo
ss

an
d

La
ke

(1
99

4)
12

8
W

E
B

30
9_

A
M

ar
in

e
O

ne
ne

tw
or

k
pe

r
pu

bl
ic

at
io

n
N

A
G

on
ti

ka
ki

et
al

.(
20

11
)

12
9

W
E

B
31

0_
A

R
iv

er
O

ne
ne

tw
or

k
pe

r
pu

bl
ic

at
io

n
Y
es

K
ha

n
an

d
P
an

ik
ka

r
(2

00
9)

13
0

W
E

B
31

1_
T

O
ne

ne
tw

or
k

pe
r

pu
bl

ic
at

io
n

N
A

M
em

m
ot

t
et

al
.(

20
00

)
13

1
W

E
B

33
4_

A
La

ke
A

lc
or

lo
et

al
.(

20
01

)
N

A
A

lc
or

lo
et

al
.(

20
01

)
13

2
W

E
B

33
5_

A
La

ke
A

lc
or

lo
et

al
.(

20
01

)
N

A
A

lc
or

lo
et

al
.(

20
01

) T
ab

le
co

nt
in

ue
d

..
.



21
2

..
.C

on
ti

nu
at

io
n

of
T
ab

le
S6

.7
.

#
N

am
e

T
yp

e
R

efi
ne

d
aq

ua
ti

c
ty

pe

P
ub

lic
at

io
n

gr
ou

pi
ng

E
co

pa
th

C
it

at
io

n

13
3

W
E

B
33

8_
A

M
ar

in
e

O
ne

ne
tw

or
k

pe
r

pu
bl

ic
at

io
n

Y
es

T
or

re
s

et
al

.(
20

13
)

13
4

W
E

B
34

0_
A

M
ar

in
e

O
ne

ne
tw

or
k

pe
r

pu
bl

ic
at

io
n

N
A

Sm
it

h
et

al
.(

20
20

)
13

5
W

E
B

34
3_

A
&

T
O

ne
ne

tw
or

k
pe

r
pu

bl
ic

at
io

n
N

A
K

it
ch

in
g

(1
98

7)
13

6
W

E
B

34
4_

T
O

ne
ne

tw
or

k
pe

r
pu

bl
ic

at
io

n
N

A
H

od
ki

ns
on

an
d

C
ou

ls
on

(2
00

4)
13

7
W

E
B

34
5_

A
La

ke
O

ne
ne

tw
or

k
pe

r
pu

bl
ic

at
io

n
N

A
B

oi
t

et
al

.(
20

12
)

13
8

W
E

B
34

7_
A

St
re

am
O

ne
ne

tw
or

k
pe

r
pu

bl
ic

at
io

n
N

A
M

ot
ta

an
d

U
ie

da
(2

00
5)

13
9

W
E

B
35

0_
A

M
ar

in
e

O
ne

ne
tw

or
k

pe
r

pu
bl

ic
at

io
n

N
A

D
ou

gl
as

s
et

al
.(

20
11

)
14

0
W

E
B

35
1_

A
&

T
O

ne
ne

tw
or

k
pe

r
pu

bl
ic

at
io

n
N

A
W

ar
re

n
(1

98
9)

14
1

W
E

B
35

3_
A

St
re

am
O

ne
ne

tw
or

k
pe

r
pu

bl
ic

at
io

n
Y
es

P
oe

pp
er

l(
20

03
)

14
2

W
E

B
35

4_
T

O
ne

ne
tw

or
k

pe
r

pu
bl

ic
at

io
n

N
A

G
ol

dw
as

se
r

an
d

R
ou

gh
ga

rd
en

(1
99

3)
14

3
W

E
B

35
5_

A
La

ke
C

oh
en

et
al

.(
20

03
)

N
A

C
oh

en
et

al
.(

20
03

)
14

4
W

E
B

35
6_

A
La

ke
C

oh
en

et
al

.(
20

03
)

N
A

C
oh

en
et

al
.(

20
03

)
14

5
W

E
B

35
7_

A
M

ar
in

e
O

ne
ne

tw
or

k
pe

r
pu

bl
ic

at
io

n
N

A
Y

od
zi

s
(1

99
8)

14
6

W
E

B
35

8_
T

O
ne

ne
tw

or
k

pe
r

pu
bl

ic
at

io
n

N
A

Sc
hr

öt
er

et
al

.(
20

03
)

14
7

ca
rp

in
te

ri
a_

A
&

T
O

ne
ne

tw
or

k
pe

r
pu

bl
ic

at
io

n
N

A
La

ffe
rt

y
et

al
.(

20
06

)
14

8
F
W

_
00

8_
A

M
ar

in
e

O
ne

ne
tw

or
k

pe
r

pu
bl

ic
at

io
n

Y
es

B
as

co
m

pt
e

an
d

Jo
rd

an
o

(2
00

7)
14

9
m

ow
n_

C
lm

ow
n1

_
T

C
at

ti
n

B
la

nd
en

ie
r

(2
00

4)
N

A
C

at
ti

n
B

la
nd

en
ie

r
(2

00
4)

15
0

m
ow

n_
C

lm
ow

n2
_

T
C

at
ti

n
B

la
nd

en
ie

r
(2

00
4)

N
A

C
at

ti
n

B
la

nd
en

ie
r

(2
00

4)
15

1
m

ow
n_

Sc
m

ow
n1

_
T

C
at

ti
n

B
la

nd
en

ie
r

(2
00

4)
N

A
C

at
ti

n
B

la
nd

en
ie

r
(2

00
4)

15
2

m
ow

n_
Sc

m
ow

n2
_

T
C

at
ti

n
B

la
nd

en
ie

r
(2

00
4)

N
A

C
at

ti
n

B
la

nd
en

ie
r

(2
00

4)

15
3

no
t_

m
ow

n_
C

lC
on

tr
ol

1_
T

C
at

ti
n

B
la

nd
en

ie
r

(2
00

4)
N

A
C

at
ti

n
B

la
nd

en
ie

r
(2

00
4)

T
ab

le
co

nt
in

ue
d

..
.



21
3

..
.C

on
ti

nu
at

io
n

of
T
ab

le
S6

.7
.

#
N

am
e

T
yp

e
R

efi
ne

d
aq

ua
ti

c
ty

pe

P
ub

lic
at

io
n

gr
ou

pi
ng

E
co

pa
th

C
it

at
io

n

15
4

no
t_

m
ow

n_
C

lC
on

tr
ol

2_
T

C
at

ti
n

B
la

nd
en

ie
r

(2
00

4)
N

A
C

at
ti

n
B

la
nd

en
ie

r
(2

00
4)

15
5

no
t_

m
ow

n_
Sc

C
on

tr
ol

1_
T

C
at

ti
n

B
la

nd
en

ie
r

(2
00

4)
N

A
C

at
ti

n
B

la
nd

en
ie

r
(2

00
4)

15
6

no
t_

m
ow

n_
Sc

C
on

tr
ol

2_
T

C
at

ti
n

B
la

nd
en

ie
r

(2
00

4)
N

A
C

at
ti

n
B

la
nd

en
ie

r
(2

00
4)

15
7

A
E

W
01

_
T

D
ig

el
et

al
.(

20
14

)
N

A
D

ig
el

et
al

.(
20

14
)

15
8

A
E

W
02

_
T

D
ig

el
et

al
.(

20
14

)
N

A
D

ig
el

et
al

.(
20

14
)

15
9

A
E

W
03

_
T

D
ig

el
et

al
.(

20
14

)
N

A
D

ig
el

et
al

.(
20

14
)

16
0

A
E

W
04

_
T

D
ig

el
et

al
.(

20
14

)
N

A
D

ig
el

et
al

.(
20

14
)

16
1

A
E

W
05

_
T

D
ig

el
et

al
.(

20
14

)
N

A
D

ig
el

et
al

.(
20

14
)

16
2

A
E

W
06

_
T

D
ig

el
et

al
.(

20
14

)
N

A
D

ig
el

et
al

.(
20

14
)

16
3

A
E

W
07

_
T

D
ig

el
et

al
.(

20
14

)
N

A
D

ig
el

et
al

.(
20

14
)

16
4

A
E

W
08

_
T

D
ig

el
et

al
.(

20
14

)
N

A
D

ig
el

et
al

.(
20

14
)

16
5

A
E

W
09

_
T

D
ig

el
et

al
.(

20
14

)
N

A
D

ig
el

et
al

.(
20

14
)

16
6

A
E

W
11

_
T

D
ig

el
et

al
.(

20
14

)
N

A
D

ig
el

et
al

.(
20

14
)

16
7

A
E

W
17

_
T

D
ig

el
et

al
.(

20
14

)
N

A
D

ig
el

et
al

.(
20

14
)

16
8

A
E

W
18

_
T

D
ig

el
et

al
.(

20
14

)
N

A
D

ig
el

et
al

.(
20

14
)

16
9

A
E

W
25

_
T

D
ig

el
et

al
.(

20
14

)
N

A
D

ig
el

et
al

.(
20

14
)

17
0

A
E

W
27

_
T

D
ig

el
et

al
.(

20
14

)
N

A
D

ig
el

et
al

.(
20

14
)

17
1

A
E

W
30

_
T

D
ig

el
et

al
.(

20
14

)
N

A
D

ig
el

et
al

.(
20

14
)

17
2

A
E

W
49

_
T

D
ig

el
et

al
.(

20
14

)
N

A
D

ig
el

et
al

.(
20

14
)

17
3

H
E

W
01

_
T

D
ig

el
et

al
.(

20
14

)
N

A
D

ig
el

et
al

.(
20

14
) T

ab
le

co
nt

in
ue

d
..

.



21
4

..
.C

on
ti

nu
at

io
n

of
T
ab

le
S6

.7
.

#
N

am
e

T
yp

e
R

efi
ne

d
aq

ua
ti

c
ty

pe

P
ub

lic
at

io
n

gr
ou

pi
ng

E
co

pa
th

C
it

at
io

n

17
4

H
E

W
02

_
T

D
ig

el
et

al
.(

20
14

)
N

A
D

ig
el

et
al

.(
20

14
)

17
5

H
E

W
03

_
T

D
ig

el
et

al
.(

20
14

)
N

A
D

ig
el

et
al

.(
20

14
)

17
6

H
E

W
04

_
T

D
ig

el
et

al
.(

20
14

)
N

A
D

ig
el

et
al

.(
20

14
)

17
7

H
E

W
05

_
T

D
ig

el
et

al
.(

20
14

)
N

A
D

ig
el

et
al

.(
20

14
)

17
8

H
E

W
06

_
T

D
ig

el
et

al
.(

20
14

)
N

A
D

ig
el

et
al

.(
20

14
)

17
9

H
E

W
10

_
T

D
ig

el
et

al
.(

20
14

)
N

A
D

ig
el

et
al

.(
20

14
)

18
0

H
E

W
11

_
T

D
ig

el
et

al
.(

20
14

)
N

A
D

ig
el

et
al

.(
20

14
)

18
1

H
E

W
12

_
T

D
ig

el
et

al
.(

20
14

)
N

A
D

ig
el

et
al

.(
20

14
)

18
2

H
E

W
13

_
T

D
ig

el
et

al
.(

20
14

)
N

A
D

ig
el

et
al

.(
20

14
)

18
3

H
E

W
16

_
T

D
ig

el
et

al
.(

20
14

)
N

A
D

ig
el

et
al

.(
20

14
)

18
4

H
E

W
17

_
T

D
ig

el
et

al
.(

20
14

)
N

A
D

ig
el

et
al

.(
20

14
)

18
5

H
E

W
21

_
T

D
ig

el
et

al
.(

20
14

)
N

A
D

ig
el

et
al

.(
20

14
)

18
6

H
E

W
22

_
T

D
ig

el
et

al
.(

20
14

)
N

A
D

ig
el

et
al

.(
20

14
)

18
7

H
E

W
36

_
T

D
ig

el
et

al
.(

20
14

)
N

A
D

ig
el

et
al

.(
20

14
)

18
8

H
E

W
47

_
T

D
ig

el
et

al
.(

20
14

)
N

A
D

ig
el

et
al

.(
20

14
)

18
9

SE
W

01
_

T
D

ig
el

et
al

.(
20

14
)

N
A

D
ig

el
et

al
.(

20
14

)
19

0
SE

W
02

_
T

D
ig

el
et

al
.(

20
14

)
N

A
D

ig
el

et
al

.(
20

14
)

19
1

SE
W

03
_

T
D

ig
el

et
al

.(
20

14
)

N
A

D
ig

el
et

al
.(

20
14

)
19

2
SE

W
04

_
T

D
ig

el
et

al
.(

20
14

)
N

A
D

ig
el

et
al

.(
20

14
)

19
3

SE
W

05
_

T
D

ig
el

et
al

.(
20

14
)

N
A

D
ig

el
et

al
.(

20
14

)
19

4
SE

W
06

_
T

D
ig

el
et

al
.(

20
14

)
N

A
D

ig
el

et
al

.(
20

14
)

19
5

SE
W

07
_

T
D

ig
el

et
al

.(
20

14
)

N
A

D
ig

el
et

al
.(

20
14

)
19

6
SE

W
08

_
T

D
ig

el
et

al
.(

20
14

)
N

A
D

ig
el

et
al

.(
20

14
) T

ab
le

co
nt

in
ue

d
..

.



21
5

..
.C

on
ti

nu
at

io
n

of
T
ab

le
S6

.7
.

#
N

am
e

T
yp

e
R

efi
ne

d
aq

ua
ti

c
ty

pe

P
ub

lic
at

io
n

gr
ou

pi
ng

E
co

pa
th

C
it

at
io

n

19
7

SE
W

09
_

T
D

ig
el

et
al

.(
20

14
)

N
A

D
ig

el
et

al
.(

20
14

)
19

8
SE

W
18

_
T

D
ig

el
et

al
.(

20
14

)
N

A
D

ig
el

et
al

.(
20

14
)

19
9

SE
W

35
_

T
D

ig
el

et
al

.(
20

14
)

N
A

D
ig

el
et

al
.(

20
14

)
20

0
SE

W
36

_
T

D
ig

el
et

al
.(

20
14

)
N

A
D

ig
el

et
al

.(
20

14
)

20
1

SE
W

37
_

T
D

ig
el

et
al

.(
20

14
)

N
A

D
ig

el
et

al
.(

20
14

)
20

2
SE

W
41

_
T

D
ig

el
et

al
.(

20
14

)
N

A
D

ig
el

et
al

.(
20

14
)

20
3

SE
W

43
_

T
D

ig
el

et
al

.(
20

14
)

N
A

D
ig

el
et

al
.(

20
14

)
20

4
SE

W
48

_
T

D
ig

el
et

al
.(

20
14

)
N

A
D

ig
el

et
al

.(
20

14
)

20
5

A
lfo

rd
_

La
ke

_
A

La
ke

H
av

en
s

(1
99

2)
N

A
H

av
en

s
(1

99
2)

20
6

B
al

sa
m

_
La

ke
_

A
La

ke
H

av
en

s
(1

99
2)

N
A

H
av

en
s

(1
99

2)
20

7
B

ea
ve

r_
La

ke
_

A
La

ke
H

av
en

s
(1

99
2)

N
A

H
av

en
s

(1
99

2)
20

8
B

ig
_

H
op

e_
La

ke
_

A
La

ke
H

av
en

s
(1

99
2)

N
A

H
av

en
s

(1
99

2)
20

9
B

ra
nd

y_
La

ke
_

A
La

ke
H

av
en

s
(1

99
2)

N
A

H
av

en
s

(1
99

2)

21
0

B
ri

dg
e_

B
ro

ok
_

La
ke

_
A

La
ke

H
av

en
s

(1
99

2)
N

A
H

av
en

s
(1

99
2)

21
1

B
ur

nt
br

id
ge

_
La

ke
_

A
La

ke
H

av
en

s
(1

99
2)

N
A

H
av

en
s

(1
99

2)
21

2
C

as
ca

de
_

La
ke

_
A

La
ke

H
av

en
s

(1
99

2)
N

A
H

av
en

s
(1

99
2)

21
3

C
hu

b_
La

ke
_

A
La

ke
H

av
en

s
(1

99
2)

N
A

H
av

en
s

(1
99

2)
21

4
C

on
ne

ra
_

La
ke

_
A

La
ke

H
av

en
s

(1
99

2)
N

A
H

av
en

s
(1

99
2)

21
5

C
on

st
ab

le
_

La
ke

_
A

La
ke

H
av

en
s

(1
99

2)
N

A
H

av
en

s
(1

99
2)

21
6

E
m

er
al

d_
La

ke
_

A
La

ke
H

av
en

s
(1

99
2)

N
A

H
av

en
s

(1
99

2)
21

7
Fa

lls
_

La
ke

_
A

La
ke

H
av

en
s

(1
99

2)
N

A
H

av
en

s
(1

99
2)

21
8

Fa
w

n_
La

ke
_

A
La

ke
H

av
en

s
(1

99
2)

N
A

H
av

en
s

(1
99

2)
T
ab

le
co

nt
in

ue
d

..
.



21
6

..
.C

on
ti

nu
at

io
n

of
T
ab

le
S6

.7
.

#
N

am
e

T
yp

e
R

efi
ne

d
aq

ua
ti

c
ty

pe

P
ub

lic
at

io
n

gr
ou

pi
ng

E
co

pa
th

C
it

at
io

n

21
9

Fe
de

ra
ti

on
_

La
ke

_
A

La
ke

H
av

en
s

(1
99

2)
N

A
H

av
en

s
(1

99
2)

22
0

G
oo

se
_

La
ke

_
A

La
ke

H
av

en
s

(1
99

2)
N

A
H

av
en

s
(1

99
2)

22
1

G
ra

ss
_

La
ke

_
A

La
ke

H
av

en
s

(1
99

2)
N

A
H

av
en

s
(1

99
2)

22
2

G
ul

l_
La

ke
_

A
La

ke
H

av
en

s
(1

99
2)

N
A

H
av

en
s

(1
99

2)
22

3
H

oe
l_

La
ke

_
A

La
ke

H
av

en
s

(1
99

2)
N

A
H

av
en

s
(1

99
2)

22
4

H
or

se
sh

oe
_

La
ke

_
A

La
ke

H
av

en
s

(1
99

2)
N

A
H

av
en

s
(1

99
2)

22
5

Li
tt

le
_

R
ai

nb
ow

_
La

ke
_

A
La

ke
H

av
en

s
(1

99
2)

N
A

H
av

en
s

(1
99

2)

22
6

Lo
ng

_
La

ke
_

A
La

ke
H

av
en

s
(1

99
2)

N
A

H
av

en
s

(1
99

2)
22

7
Lo

on
_

La
ke

_
A

La
ke

H
av

en
s

(1
99

2)
N

A
H

av
en

s
(1

99
2)

22
8

Lo
st

_
La

ke
_

E
as

t_
A

La
ke

H
av

en
s

(1
99

2)
N

A
H

av
en

s
(1

99
2)

22
9

Lo
st

_
La

ke
_

A
La

ke
H

av
en

s
(1

99
2)

N
A

H
av

en
s

(1
99

2)

23
0

Lo
w

er
_

Si
st

er
_

La
ke

_
A

La
ke

H
av

en
s

(1
99

2)
N

A
H

av
en

s
(1

99
2)

23
1

O
sw

eg
o_

La
ke

_
A

La
ke

H
av

en
s

(1
99

2)
N

A
H

av
en

s
(1

99
2)

23
2

R
at

_
La

ke
_

A
La

ke
H

av
en

s
(1

99
2)

N
A

H
av

en
s

(1
99

2)
23

3
R

az
or

ba
ck

_
La

ke
_

A
La

ke
H

av
en

s
(1

99
2)

N
A

H
av

en
s

(1
99

2)
23

4
R

us
si

an
_

La
ke

_
A

La
ke

H
av

en
s

(1
99

2)
N

A
H

av
en

s
(1

99
2)

23
5

Sa
ffo

rd
_

La
ke

_
A

La
ke

H
av

en
s

(1
99

2)
N

A
H

av
en

s
(1

99
2)

23
6

Sa
nd

_
La

ke
_

A
La

ke
H

av
en

s
(1

99
2)

N
A

H
av

en
s

(1
99

2)
23

7
Sq

ua
w

_
La

ke
_

A
La

ke
H

av
en

s
(1

99
2)

N
A

H
av

en
s

(1
99

2)
23

8
St

in
k_

La
ke

_
A

La
ke

H
av

en
s

(1
99

2)
N

A
H

av
en

s
(1

99
2)

T
ab

le
co

nt
in

ue
d

..
.



21
7

..
.C

on
ti

nu
at

io
n

of
T
ab

le
S6

.7
.

#
N

am
e

T
yp

e
R

efi
ne

d
aq

ua
ti

c
ty

pe

P
ub

lic
at

io
n

gr
ou

pi
ng

E
co

pa
th

C
it

at
io

n

23
9

T
w

el
ft

h_
T
ee

_
La

ke
_

A
La

ke
H

av
en

s
(1

99
2)

N
A

H
av

en
s

(1
99

2)

24
0

W
hi

pp
le

_
La

ke
_

A
La

ke
H

av
en

s
(1

99
2)

N
A

H
av

en
s

(1
99

2)
24

1
B

uc
k_

P
on

d_
A

&
T

H
av

en
s

(1
99

2)
N

A
H

av
en

s
(1

99
2)

24
2

C
hu

b_
P
on

d_
A

&
T

H
av

en
s

(1
99

2)
N

A
H

av
en

s
(1

99
2)

24
3

H
el

ld
iv

er
_

P
on

d_
A

&
T

H
av

en
s

(1
99

2)
N

A
H

av
en

s
(1

99
2)

24
4

H
ig

h_
P
on

d_
A

&
T

H
av

en
s

(1
99

2)
N

A
H

av
en

s
(1

99
2)

24
5

A
fo

n_
H

af
re

n_
20

05
_

A
St

re
am

La
ye

r
et

al
.(

20
10

)
N

A
La

ye
r

et
al

.(
20

10
)

24
6

A
llt

_
a_

M
ha

rc
ai

dh
_

A
St

re
am

La
ye

r
et

al
.(

20
10

)
N

A
La

ye
r

et
al

.(
20

10
)

24
7

B
ro

ad
st

on
e_

St
re

am
_

A
St

re
am

La
ye

r
et

al
.(

20
10

)
N

A
La

ye
r

et
al

.(
20

10
)

24
8

D
ar

ga
ll_

La
ne

_
A

St
re

am
La

ye
r

et
al

.(
20

10
)

N
A

La
ye

r
et

al
.(

20
10

)

24
9

D
ud

do
n_

P
ik

e_
B

ec
k_

A
St

re
am

La
ye

r
et

al
.(

20
10

)
N

A
La

ye
r

et
al

.(
20

10
)

25
0

H
ar

dk
no

tt
_

G
ill

_
A

St
re

am
La

ye
r

et
al

.(
20

10
)

N
A

La
ye

r
et

al
.(

20
10

)
25

1
M

ill
_

St
re

am
_

A
St

re
am

La
ye

r
et

al
.(

20
10

)
N

A
La

ye
r

et
al

.(
20

10
)

25
2

M
os

en
da

le
_

B
ec

k_
A

St
re

am
La

ye
r

et
al

.(
20

10
)

N
A

La
ye

r
et

al
.(

20
10

)
25

3
O

ld
_

Lo
dg

e_
A

St
re

am
La

ye
r

et
al

.(
20

10
)

N
A

La
ye

r
et

al
.(

20
10

)
25

4
A

le
rt

_
T

Le
ga

gn
eu

x
et

al
.(

20
14

)
N

A
Le

ga
gn

eu
x

et
al

.(
20

14
)

25
5

B
yl

ot
_

T
Le

ga
gn

eu
x

et
al

.(
20

14
)

N
A

Le
ga

gn
eu

x
et

al
.(

20
14

)
25

6
H

er
sc

he
l_

T
Le

ga
gn

eu
x

et
al

.(
20

14
)

N
A

Le
ga

gn
eu

x
et

al
.(

20
14

)
T
ab

le
co

nt
in

ue
d

..
.



21
8

..
.C

on
ti

nu
at

io
n

of
T
ab

le
S6

.7
.

#
N

am
e

T
yp

e
R

efi
ne

d
aq

ua
ti

c
ty

pe

P
ub

lic
at

io
n

gr
ou

pi
ng

E
co

pa
th

C
it

at
io

n

25
7

N
en

et
sk

y_
T

Le
ga

gn
eu

x
et

al
.(

20
14

)
N

A
Le

ga
gn

eu
x

et
al

.(
20

14
)

25
8

Y
am

al
_

T
Le

ga
gn

eu
x

et
al

.(
20

14
)

N
A

Le
ga

gn
eu

x
et

al
.(

20
14

)
25

9
Za

ck
en

be
rg

_
T

Le
ga

gn
eu

x
et

al
.(

20
14

)
N

A
Le

ga
gn

eu
x

et
al

.(
20

14
)

26
0

Ic
el

an
d_

St
re

am
_

IS
7_

A
pr

il_
20

09
_

A
St

re
am

O
’G

or
m

an
et

al
.(

20
19

)
N

A
O

’G
or

m
an

et
al

.(
20

19
)

26
1

Ic
el

an
d_

St
re

am
_

IS
7_

A
ug

us
t_

20
08

_
A

St
re

am
O

’G
or

m
an

et
al

.(
20

19
)

N
A

O
’G

or
m

an
et

al
.(

20
19

)

26
2

Ic
el

an
d_

St
re

am
_

IS
8_

A
pr

il_
20

09
_

A
St

re
am

O
’G

or
m

an
et

al
.(

20
19

)
N

A
O

’G
or

m
an

et
al

.(
20

19
)

26
3

Ic
el

an
d_

St
re

am
_

IS
8_

A
ug

us
t_

20
08

_
A

St
re

am
O

’G
or

m
an

et
al

.(
20

19
)

N
A

O
’G

or
m

an
et

al
.(

20
19

)

26
4

La
ke

_
M

al
aw

i_
A

La
ke

O
ne

ne
tw

or
k

pe
r

pu
bl

ic
at

io
n

Y
es

N
si

ku
(1

99
9)

26
5

Y
th

an
_

E
st

ua
ry

_
A

M
ar

in
e

O
ne

ne
tw

or
k

pe
r

pu
bl

ic
at

io
n

N
A

C
oh

en
et

al
.(

20
09

)
26

6
K

on
gs

fjo
rd

en
_

A
M

ar
in

e
O

ne
ne

tw
or

k
pe

r
pu

bl
ic

at
io

n
N

A
E

kl
öf

et
al

.(
20

13
)

26
7

W
ed

de
ll_

Se
a_

A
M

ar
in

e
O

ne
ne

tw
or

k
pe

r
pu

bl
ic

at
io

n
N

A
Ja

co
b

et
al

.(
20

11
)

26
8

Sk
ip

w
it

h_
P
on

d_
A

&
T

O
ne

ne
tw

or
k

pe
r

pu
bl

ic
at

io
n

N
A

W
ar

re
n

(1
99

0)
26

9
G

ea
ra

gh
_

T
O

ne
ne

tw
or

k
pe

r
pu

bl
ic

at
io

n
N

A
M

cL
au

gh
lin

et
al

.(
20

10
)

27
0

F
lo

ri
da

Is
la

nd
E

1_
A

&
T

P
ie

ch
ni

k
et

al
.(

20
08

)
N

A
P

ie
ch

ni
k

et
al

.(
20

08
)

27
1

F
lo

ri
da

Is
la

nd
E

2_
A

&
T

P
ie

ch
ni

k
et

al
.(

20
08

)
N

A
P

ie
ch

ni
k

et
al

.(
20

08
)

27
2

F
lo

ri
da

Is
la

nd
E

3_
A

&
T

P
ie

ch
ni

k
et

al
.(

20
08

)
N

A
P

ie
ch

ni
k

et
al

.(
20

08
)

27
3

F
lo

ri
da

Is
la

nd
E

7_
A

&
T

P
ie

ch
ni

k
et

al
.(

20
08

)
N

A
P

ie
ch

ni
k

et
al

.(
20

08
)

27
4

F
lo

ri
da

Is
la

nd
E

9_
A

&
T

P
ie

ch
ni

k
et

al
.(

20
08

)
N

A
P

ie
ch

ni
k

et
al

.(
20

08
)



Chapter 7

Final remarks

Species interactions are fundamental to the functioning of our planet. For example, interactions
influence the evolution of species via community stability (Landi et al., 2018), species abundances,
and ecosystem functioning (Barraclough, 2015). Moreover, species interactions also have substantial
economic value. Among the most obvious are pollination services, estimated to enhance annual global
crop output by $235–577 billion USD in 2015 (Potts et al., 2016), a figure that has surely increased
since.

Despite their importance, effectively measuring the impact of species interactions on ecological
communities is enormously difficult. Given the large number of species and interactions that make
up an ecological community, simply amassing and keeping track of all the constituent components
is challenging (Morales-Castilla et al., 2015; de Aguiar et al., 2019). Beyond this characterization,
accurately assessing how species interactions affect community functioning remains elusive. Although
communities are commonly modelled as species interaction networks—whose topology (or structure)
is defined by their configuration of nodes (i.e., species) and edges (i.e., interactions)—many network
metrics that measure this structure lack any known biological function (Thompson et al., 2012;
Dormann, 2023). For instance, while high nestedness in plant-pollinator networks has been touted
as a stabilizing mechanism for communities in seasonal environments (Song et al., 2017), no such
study has rigorously tested this claim. Certainly more work is needed to develop biologically
meaningful network metrics and test when species interaction networks effectively model their
respective ecological communities.

The aims of my thesis were to help resolve the drivers of topology in species interaction networks
and to evaluate the utility of networks for informing about ecological communities. This was
achieved through investigating the dynamics in the structure of species interaction networks, and the
formulation of a framework for understanding these structural drivers. In short, I uncovered large
and natural changes to species interactions in time and space. This includes invoking seasonality
to explain temporal changes of stream fish communities across the eastern United States, and
attempting to use seasonality to understand the topology of ecological communities across the
globe. I also explored how my proposed three classes of biological and environmental factors, sampling
strategies, and network construction methodologies determine the topology of ecological communities.
In combination, these three classes strongly influence the structure of species interaction networks,
which likely make comparing networks built by different researchers problematic.
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7.1 Thesis summary and future directions

7.1.1 Synthesis of thesis

Undoubtedly, the effects of seasonality on community topology have been largely overlooked relative
to their potential impact (White and Hastings, 2020). This is especially true for communities
consisting of large-bodied organisms, primarily due to the practical difficulty in characterizing
these organisms and their trophic interactions (Brimacombe et al., 2021). To address this, in
Chapter 2, I adopted an inferential method that inferred interactions when the abundance of
one species affected the abundance of another. This method was applied to build two seasonal
species interaction networks from stream fish abundances measured in the Fall and Spring at
long-term ecological research stations. In general, I uncovered that the topology of stream fish
communities changes considerably across these seasons, comparable to that found in plant-pollinator
communities (CaraDonna et al., 2021). Notably, most of these seasonal network changes were due
to differences in interactions between species present in both seasons, rather than seasonal species
turnover. In concert, these findings highlight that species interaction networks that do not account
for natural temporal changes in their communities, both in terms of their species composition and
interactions, risk obscuring true ecological dynamics.

Of the few studies that have evaluated the influence of seasonality on ecological networks, many
have done so by reusing species interaction networks to test their hypotheses (Brimacombe et al.,
2022b). These networks were constructed by previous researchers for their own studies, and made
freely available (i.e., open) after publication. However, studies that reuse open networks are typically
limited to testing their hypothesis using a small number of networks (i.e., n < 30) across a small
spatial extent [e.g., Olesen and Jordano (2002); Schleuning et al. (2014); Dalsgaard et al. (2017)]. In
both Chapters 3 and 4, I used large datasets of open bipartite species interaction networks to evaluate
if seasonality explains network topology across the globe. Contrary to previous conclusions, I found
no substantive evidence that community topology was a function of seasonality. Instead, a control
variable for the amount of effort used to build each open network, sampling intensity (Schleuning
et al., 2012), almost always explained network topology better than any combination of abiotic
variables. Hence, open species interaction networks built by different researchers may be inadequate
for testing ecological hypotheses due to significant structural differences among them.

Clearly, topological differences among open networks are necessary for investigating their
drivers. However, open species interaction networks sourced from various publications likely exhibit
substantial topological differences, posing challenges for their comparison (May, 1983). These
disparities stem from the diverse (i) sampling strategies, and (ii) network construction methodologies
employed across the studies that build them (Dunne, 2006). Moreover, the communities represented
by these open networks are (iii) exposed to various biological and environmental factors. Using a
subgraph technique, I quantified topological heterogeneity across commonly adopted open bipartite
networks (e.g., plant-pollinator, host-parasite; in Chapter 5), and open food webs (in Chapter 6).
In both Chapters, I found no compelling evidence that the environment, sampling strategies, or
network construction methods alone clearly explained network topology. Instead, the topology of
open networks appears to be primarily determined by the publication source of each network,
as networks sourced from the same publication are very topologically similar. It is likely that
biological and environmental factors, sampling strategies, and network construction methodologies act
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similarly on networks sourced from the same publication to make them structurally similar. These
findings highlight the potential pitfalls of interpreting community structure through aggregated open
networks without appropriate controls for how they were built.

7.1.2 Future directions

In ecology, species interaction networks frequently serve as models to represent ecological
communities (Poisot et al., 2016b; Delmas et al., 2019). However, a significant gap persists in
our understanding of how effectively these types of networks accurately reflect real ecological
communities. Researchers who build networks to investigate the topology of communities, frequently
fail to validate their networks or their network metrics (Blüthgen, 2010; Dormann, 2023).
Consequently, inferences drawn from these potentially flawed representations—for instance, how
food webs are influenced by land-use intensity Brimacombe et al. (2024)—likely lead to misleading
conclusions. To ensure the optimal evolution of network ecology, it is crucial that we develop better
approaches to link the biology of the systems we are trying to model and the corresponding network
structure.

An ambitious approach to improve this connection involves testing predictions derived from
these models. Predictive test, or forecasts, are considered a more rigorous test of hypotheses than
traditional significance tests (Dietze et al., 2018), and thus offer greater confidence in models that
demonstrate good predictive capabilities. By comparing predictions to empirical observation, we
can measure a network’s accuracy, reliability and transparency, including assumptions, and model
choice (Bodner et al., 2020). Prediction is by no means a fool-proof approach to choose useful models,
after all, even a broken clock is right twice a day. Therefore, careful consideration must be given to
plausible conclusions that can be drawn from the data and approaches used (Shadish et al., 2002).
For example, while a few plant-pollinator networks may inform about the functioning of their local
ecosystem, generalizing these results requires caution.

To model communities effectively, we must consider them as dynamic through space and
time (Pellissier et al., 2018; CaraDonna et al., 2021). While it has become commonplace to
model communities as static networks (Cirtwill et al., 2019), such models will likely not produce
as many fruitful insights as possible since these networks do not capture spatial and temporal
realities (Vázquez et al., 2022). For example, community structure is known to vary across days,
weeks, months, and years (Schwarz et al., 2020), and across the amount of area used to encapsulate
the community (Galiana et al., 2022). If we hope to understand community dynamics using networks,
we must account for these spatial and temporal dimensions.

Of course, the availability of large amounts of high-quality empirical data is a prerequisite for
improving ecological community representation as networks (Valdovinos, 2019). However, collecting
this data is an incredibly arduous and expensive task (McLeod et al., 2021). After all, determining
species’ presences and absences is known to be challenging, but collecting interaction data is
even harder. Specifically, observing a trophic interaction between two species requires detecting
both species and witnessing an interaction between them (Jordano, 2016). Without sufficient
effort, an ecological community will be misrepresented as a network when species and their
interactions are missed during in situ sampling (Pringle and Hutchinson, 2020). Acknowledging this
difficulty is important as it underscores that building networks without adequate data is insufficient
for understanding complex ecological systems. However, addressing the shortfall in high quality
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community data—the Eltonian shortfall—is essential for advancing network ecology.
Given the expense of collected data, many communities and areas across the globe remain

poorly characterized (Poisot et al., 2021). Fortunately, cheaper methods to overcome this limitation
are now increasingly available. In particular, camera traps have become popular as instruments
to observe biological and environmental phenomena quickly and less intrusively (Smith et al.,
2020; Fisher, 2023). Paired with machine learning and artificial intelligence, camera traps are
likely to be influential in many different areas of ecology, including species identification and
monitoring, ecosystem management, and ecological modelling (Christin et al., 2019). Also potentially
transformative for network science is species identification using DNA collected from environmental
samples (eDNA) by applying the metabarcoding procedure (Deiner et al., 2017). For example,
the metabarcoding of eDNA collected from water samples has been used to reconstruct species
co-occurrence networks (Seymour et al., 2020). By identifying the co-occurrence of many species
using a single environmental sample, metabarcoding can significantly reduce the cost burden of
characterizing a community (Corlett, 2017). Additionally, metabarcoding of gut contents and feces
can be applied to finely resolve species eaten (i.e., the trophic interactions in a food web), which might
otherwise be incomprehensible to decipher by traditional methods such as a microscope (Pringle and
Hutchinson, 2020). Although promising, relatively few studies have implemented camera traps or
metabarcoding to study species interaction networks, and so their effectiveness in this context will
need to be continuously tested.

Long-term monitoring stations also offer invaluable insights into ecological
communities (Gonzalez et al., 2016), albeit at a premium cost. These initiatives are particularly
useful as they enable long-term studies to reveal trends not uncovered by shorter observational
experiments (Magnuson, 1990). Combined with the many additional measurements taken, these
long-term monitoring stations contribute to a holistic understanding of ecology (Collins and
Childers, 2014). For example, one of the most prominent initiatives in North America is the
National Ecological Observatory Network (NEON), which monitors biotic and abiotic variables
across many sites in the United States (Thorpe et al., 2016). Since the empirical observations
at NEON are collected using standardized protocols across sites, they can be more easily
compared across wide spatial and temporal extents, relating biological response variables to
abiotic measurements. Beyond the many findings already made using this data source (listed
here: https://neon.dimensions.ai/discover/publication), including those presented in
Chapter 2, many more discoveries that involve long-term monitoring stations are likely to be made
in the future (Vanderbilt and Gaiser, 2017).

Currently, we rely heavily on reusing open species interaction networks from previous published
studies to understand ecological communities, due to the impracticality of sampling communities
across space and time (Poisot et al., 2021). However, the diverse biological and environmental factors,
sampling strategies, and network construction methodologies that strongly influence the structure
of networks sourced from different publications complicate drawing meaningful inferences from
them (Brimacombe et al., 2023). Perhaps unsurprisingly due to many influences, open networks
often resemble the structure of random network null models (Banville et al., 2023). Indeed, many
questions surround the utility of these open networks (Dunne, 2006), and whether approaches can
be adopted to make them more commensurable. For instance, how can we effectively compare the
structure of open networks representing a dung food web and a forest food web to further our
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understanding of community ecology? Clearly, networks constructed for vastly different environments
are collected in very different ways, with different sets of organisms in mind (May, 1983; Paine, 1988).
Further research is needed to develop effective methods to compare these networks. Nevertheless,
improvements to network data will likely be a necessity (Winemiller, 1990). This includes establishing
protocols to record the sampling procedures (e.g., amount of time and area used to monitor an
in situ community), network construction methodologies (e.g., all nodes represent species), and
environmental and biological factors that influence the studied community by the researchers that
build networks (Poisot et al., 2016b; Kita et al., 2022).

In addition to their intrinsic value, studying communities as species interaction networks
could hold important conservation implications amid the sixth mass extinction. Many species are
experiencing rapid declining population sizes (Ceballos et al., 2017), a crisis exacerbated by climate
change (IPCC, 2021). Addressing this loss will require informed policy that combines the effort of
both decision makers and scientists (Bodner et al., 2021b). Holistic approaches, such as viewing
a community as a network of interacting species, offer promising avenues to inform scientists.
For instance, identifying keystone species within food webs may pinpoint species for targeted
conservation efforts that, if conserved, may avoid cascading species loss (Vázquez et al., 2022).
Of course, other insights will be gained from adopting additional methodologies, but leveraging
networks may be another tool for effective conservation management.

7.2 Conclusion

Ecological communities are complex systems, commonly modelled as networks where species are
represented as nodes and their trophic interactions as edges. Undoubtedly, the network approach
has uncovered many properties regarding communities, but it has also likely missed others. My
thesis has highlighted some of these shortcomings. In particular, I have demonstrated how a
static representation of an ecological community fails to capture important temporal dynamics
between species and their interactions, which perhaps can be better captured by modelling the
same community across time using multiple networks. Additionally, I have explored how the three
classes of sampling strategies, network construction methodologies, and biological and environmental
factors holistically influence the topology of species interaction networks. While these three classes
induce a publication effect in the structure of networks sourced from the same publication, this result
suggests effective comparison can be made if networks are sampled and constructed using similar
approaches. By addressing these criticisms and embracing the suggested fixes, my thesis attempts
to enhance our understanding of ecological communities using networks.
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